Amusements in Mathematics


Henry Ernest Dudeney - 1917
    Intriguing, witty, paradoxical productions of one of the world's foremost creators of puzzles.This book was converted from its physical edition to the digital format by a community of volunteers. You may find it for free on the web. Purchase of the Kindle edition includes wireless delivery.

Category Theory for Programmers


Bartosz Milewski - 2014
    Collected from the series of blog posts starting at: https://bartoszmilewski.com/2014/10/2...Hardcover available at: http://www.blurb.com/b/9008339-catego...

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

A History of π


Petr Beckmann - 1970
    Petr Beckmann holds up this mirror, giving the background of the times when pi made progress -- and also when it did not, because science was being stifled by militarism or religious fanaticism.

CRC Handbook of Chemistry and Physics


David R. Lide - 1984
    This edition contains NEW tables on Properties of Ionic Liquids, Solubilities of Hydrocarbons in Sea Water, Solubility of Organic Compounds in Superheated Water, and Nutritive Value of Foods. It also updates many tables including Critical Constants, Heats of Vaporization, Aqueous Solubility of Organic Compounds, Vapor Pressure of Mercury, Scientific Abbreviations and Symbols, and Bond Dissociation Energies. The 88th Edition also presents a new Foreword written by Dr. Harold Kroto, a 1996 Nobel Laureate in Chemistry.

Mathematical Analysis


Tom M. Apostol - 1957
    It provides a transition from elementary calculus to advanced courses in real and complex function theory and introduces the reader to some of the abstract thinking that pervades modern analysis.

Real World OCaml: Functional programming for the masses


Yaron Minsky - 2013
    Through the book’s many examples, you’ll quickly learn how OCaml stands out as a tool for writing fast, succinct, and readable systems code.Real World OCaml takes you through the concepts of the language at a brisk pace, and then helps you explore the tools and techniques that make OCaml an effective and practical tool. In the book’s third section, you’ll delve deep into the details of the compiler toolchain and OCaml’s simple and efficient runtime system.Learn the foundations of the language, such as higher-order functions, algebraic data types, and modulesExplore advanced features such as functors, first-class modules, and objectsLeverage Core, a comprehensive general-purpose standard library for OCamlDesign effective and reusable libraries, making the most of OCaml’s approach to abstraction and modularityTackle practical programming problems from command-line parsing to asynchronous network programmingExamine profiling and interactive debugging techniques with tools such as GNU gdb

Basketball on Paper: Rules and Tools for Performance Analysis


Dean Oliver - 2003
    Basketball on Paper doesn’t diagram plays or explain how players get in shape, but instead demonstrates how to interpret player and team performance. Dean Oliver highlights general strategies for teams when they’re winning or losing and what aspects should be the focus in either situation. He describes and quantifies the jobs of team leaders and role players, then discusses the interactions between players and how to achieve the best fit. Oliver conceptualizes the meaning of teamwork and how to quantify the value of different types of players working together. He examines historically successful NBA teams and identifies what made them so successful: individual talent, a system of putting players together, or good coaching. Oliver then uses these statistical tools and case studies to evaluate the best players in history, such as Magic Johnson, Wilt Chamberlain, Bill Russell, and Charles Barkley and how they contributed to their teams’ success. He does the same for some of the NBA’s "oddball" players-Manute Bol, Muggsy Bogues, and Dennis Rodman and for the WNBA’s top players. Basketball on Paper is unique in its incorporation of business and analytical concepts within the context of basketball to measure the value of players in a cooperative setting. Whether you’re looking for strategies or new ideas to throw out while watching the ballgame at a sports bar, Dean Oliver’sBasketball on Paper will give you amazing new insights into teamwork, coaching, and success.

Signals and Systems


A. Anand Kumar - 2011
    Written with student centred, pedagogically driven approach, the text provides a self-contained introduction to the theory of signals and systems. This book looks at the concepts of systems, and also examines signals and the way that signals interact with physical systems. It covers topics ranging from basic signals and systems to signal analysis, properties of continuous-time Fourier transforms including Fourier transforms of standard signals, signal transmission through linear systems, relation between convolution and correlation of signals, sampling theorems and techniques, and transform analysis of LTI systems. All the solved and unsolved problems in this book are designed to illustrate the topics in a clear way.

Poincare's Prize: The Hundred-Year Quest to Solve One of Math's Greatest Puzzles


George G. Szpiro - 2007
    Amazingly, the story unveiled in it is true.In the world of math, the Poincaré Conjecture was a holy grail. Decade after decade the theorem that informs how we understand the shape of the universe defied every effort to prove it. Now, after more than a century, an eccentric Russian recluse has found the solution to one of the seven greatest math problems of our time, earning the right to claim the first one-million-dollar Millennium math prize.George Szpiro begins his masterfully told story in 1904 when Frenchman Henri Poincaré formulated a conjecture about a seemingly simple problem. Imagine an ant crawling around on a large surface. How would it know whether the surface is a flat plane, a round sphere, or a bagel- shaped object? The ant would need to lift off into space to observe the object. How could you prove the shape was spherical without actually seeing it? Simply, this is what Poincaré sought to solve.In fact, Poincaré thought he had solved it back at the turn of the twentieth century, but soon realized his mistake. After four more years' work, he gave up. Across the generations from China to Texas, great minds stalked the solution in the wilds of higher dimensions. Among them was Grigory Perelman, a mysterious Russian who seems to have stepped out of a Dostoyevsky novel. Living in near poverty with his mother, he has refused all prizes and academic appointments, and rarely talks to anyone, including fellow mathematicians. It seemed he had lost the race in 2002, when the conjecture was widely but, again, falsely reported as solved. A year later, Perelman dropped three papers onto the Internet that not only proved the Poincaré Conjecture but enlightened the universe of higher dimensions, solving an array of even more mind-bending math with implications that will take an age to unravel. After years of review, his proof has just won him a Fields Medal--the 'Nobel of math'--awarded only once every four years. With no interest in fame, he refused to attend the ceremony, did not accept the medal, and stayed home to watch television.Perelman is a St. Petersburg hero, devoted to an ascetic life of the mind. The story of the enigma in the shape of space that he cracked is part history, part math, and a fascinating tale of the most abstract kind of creativity.

Understanding Thermodynamics


Hendrick C. Van Ness - 1983
    Language is informal, examples are vivid and lively, and the perspectivie is fresh. Based on lectures delivered to engineering students, this work will also be valued by scientists, engineers, technicians, businessmen, anyone facing energy challenges of the future.

Good Math: A Geek's Guide to the Beauty of Numbers, Logic, and Computation


Mark C. Chu-Carroll - 2013
    There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular “Good Math” blog, you’ll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird.Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing.If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark’s book will both entertain and enlighten you.

Six Easy Pieces: Essentials of Physics By Its Most Brilliant Teacher


Richard P. Feynman - 1995
    This set couples a book containing the six easiest chapters from Richard P. Feynman's landmark work, Lectures on Physics—specifically designed for the general, non-scientist reader—with the actual recordings of the late, great physicist delivering the lectures on which the chapters are based. Nobel Laureate Feynman gave these lectures just once, to a group of Caltech undergraduates in 1961 and 1962, and these newly released recordings allow you to experience one of the Twentieth Century's greatest minds—as if you were right there in the classroom.

Turing's Cathedral: The Origins of the Digital Universe


George Dyson - 2012
    In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time.  How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.

The World of Mathematics: A Four-Volume Set


James Roy Newman - 1956
    It comprises non-technical essays on every aspect of the vast subject, including articles by scores of eminent mathematicians and other thinkers.