Book picks similar to
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity by Steven Weinberg
physics
science
textbooks
general-relativity
The Laws of Thermodynamics: A Very Short Introduction
Peter Atkins - 1990
From the sudden expansion of a cloud of gas to the cooling of hot metal--everything is moved or restrained by four simple laws. Written by Peter Atkins, one of the world's leading authorities on thermodynamics, this powerful and compact introduction explains what these four laws are and how they work, using accessible language and virtually no mathematics. Guiding the reader a step at a time, Atkins begins with Zeroth (so named because the first two laws were well established before scientists realized that a third law, relating to temperature, should precede them--hence the jocular name zeroth), and proceeds through the First, Second, and Third Laws, offering a clear account of concepts such as the availability of work and the conservation of energy. Atkins ranges from the fascinating theory of entropy (revealing how its unstoppable rise constitutes the engine of the universe), through the concept of free energy, and to the brink, and then beyond the brink, of absolute zero. About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.
Things to Make and Do in the Fourth Dimension
Matt Parker - 2014
This book can be cut, drawn in, folded into shapes and will even take you to the fourth dimension. So join stand-up mathematician Matt Parker on a journey through narcissistic numbers, optimal dating algorithms, at least two different kinds of infinity and more.
An Introduction to Thermal Physics
Daniel V. Schroeder - 1999
Part I introduces concepts of thermodynamics and statistical mechanics from a unified view. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications.
The Universe: Leading Scientists Explore the Origin, Mysteries, and Future of the Cosmos
John Brockman - 2012
John Brockman brings together the world’s best-known physicists and science writers—including Brian Greene, Walter Isaacson, Nobel Prize-winners Murray Gell-Mann and Frank Wilczek, and Brian Cox—to explain the universe in all wondrous splendor.In Universe, today’s most influential science writers explain the science behind our evolving understanding of the universe and everything in it, including the cutting edge research and discoveries that are shaping our knowledge.Lee Smolin reveals how math and cosmology are helping us create a theory of the whole universe Brian Cox offers new dimensions on the Large Hadron and the existence of a Higgs-Boson particle Neil Turok analyzes the fundamental laws of nature, what came before the big bang, and the possibility of a unified theory.Seth Lloyd investigates the impact of computational revolutions and the informational revolution Lawrence Krauss provides fresh insight into gravity, dark matter, and the energy of empty space Brian Greene and Walter Isaacson illuminate the genius who revolutionized modern science: Albert Einstein and much more.Explore the Universe with some of today’s greatest minds: what it is, how it came into being, and what may happen next.
An Introduction to Mechanics
Daniel Kleppner - 1973
Intended for undergraduate students with foundation skills in mathematics and a deep interest in physics, it systematically lays out the principles of mechanics: vectors, Newton's laws, momentum, energy, rotational motion, angular momentum and noninertial systems, and includes chapters on central force motion, the harmonic oscillator, and relativity. Numerous worked examples demonstrate how the principles can be applied to a wide range of physical situations, and more than 600 figures illustrate methods for approaching physical problems. The book also contains over 200 challenging problems to help the student develop a strong understanding of the subject. Password-protected solutions are available for instructors at www.cambridge.org/9780521198219.
E=mc²: A Biography of the World's Most Famous Equation
David Bodanis - 2000
Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee
Measuring the Universe: Our Historic Quest to Chart the horizons of Space and Time
Kitty Ferguson - 1900
Today, scientists are attempting to measure the entire universe and to determine its origin. Although the methods have changed, the quest to chart the horizons of space and time continues to be one of the great adventures of science.Measuring the Universe is an eloquent chronicle of the men and women– from Aristarchus to Cassini, Sir Isaac Newton to Henrietta Leavitt and Stephen Hawking–who have gradually unlocked the mysteries of "how far" and in so doing have changed our ideas about the size and nature of the universe and our place in it. Kitty Ferguson reveals their methods to have been as inventive as their results were–and are–eye-opening. Advances such as Copernicus's revolutionary insights about the arrangement of the solar system, William Herschel's meticulous creation of the first three-dimensional map of the universe, and Edwin Hubble's astonishing discovery that the universe is expanding have by turns revolutionized our concept of the universe. Connecting centuries of breakthroughs with the political and cultural events surrounding them, Ferguson makes astronomy part of the sweep of history.To measure the seemingly immeasurable, scientists have always pushed the boundaries of the imagination–today, for example, facing the paradox of an ever-expanding universe that doesn't appear to expand into anything. In Kitty Fergeson's skillfill hands, the unimaginable becomes accessible and the splendid quest something we all can share.
The Edge of Physics: A Journey to Earth's Extremes to Unlock the Secrets of the Universe
Anil Ananthaswamy - 2010
Why is the universe expanding at an ever faster rate? What is the nature of the "dark matter" that makes up almost a quarter of the universe? Why does the universe appear fine-tuned for life? Are there others besides our own? Ananthaswamy soon finds himself at the ends of the earth--in remote and sometimes dangerous places. Take the Atacama Desert in the Chilean Andes, one of the coldest, driest places on the planet, where not even a blade of grass can survive. Its spectacularly clear skies and dry atmosphere allow astronomers to gather brilliant images of galaxies billions of light-years away. Ananthaswamy takes us inside the European Southern Observatory's Very Large Telescope on Mount Paranal, where four massive domes open to the sky each night "like dragons waking up."He also takes us deep inside an abandoned iron mine in Minnesota, where half-mile-thick rock shields physicists as they hunt for elusive dark matter particles. And to the East Antarctic Ice Sheet, where engineers are drilling 1.5 miles into the clearest ice on the planet. They're building the world's largest neutrino detector, which could finally help reconcile quantum physics with Einstein's theory of general relativity.The stories of the people who work at these and other dramatic research sites--from Lake Baikal in Siberia to the Indian Astronomical Observatory in the Himalayas to the subterranean lair of the Large Hadron Collider--make for a compelling new portrait of the universe and our quest to understand it. An atmospheric, engaging, and illuminating read, "The Edge of Physics" depicts science as a human process, bringing cosmology back down to earth in the most vivid terms.
Edge of the Universe A Voyage to the Cosmic Horizon and Beyond
Paul Halpern - 2012
Yet recent theories suggest that there is far more to the universe than what our instruments record--in fact, it could be infinite. Colossal flows of galaxies, large empty regions called voids, and other unexplained phenomena offer clues that our own "bubble universe" could be part of a greater realm called the multiverse. How big is the observable universe? What it is made of? What lies beyond it? Was there a time before the Big Bang? Could space have unseen dimensions? In this book, physicist and science writer Paul Halpern explains what we know--and what we hope to soon find out--about our extraordinary cosmos.Explains what we know about the Big Bang, the accelerating universe, dark energy, dark flow, and dark matter to examine some of the theories about the content of the universe and why its edge is getting farther away from us fasterExplores the idea that the observable universe could be a hologram and that everything that happens within it might be written on its edgeWritten by physicist and popular science writer Paul Halpern, whose other books include "Collider: The Search for the World's Smallest Particles," and "What's Science Ever Done For Us: What the Simpsons Can Teach Us About Physics, Robots, Life, and the Universe"
Entropy Demystified: The Second Law Reduced To Plain Common Sense
Arieh Ben-Naim - 2007
The author paves the way for readers to discover for themselves what entropy is, how it changes, and most importantly, why it always changes in one direction in a spontaneous process.
Einstein For Dummies
Carlos I. Calle - 2005
He went on to become a twentieth-century icon-a man whose name and face are synonymous with "genius." Now, at last, ordinary readers can explore Einstein's life and work in this new For Dummies guide. Physicist Carlos Calle chronicles Einstein's career and explains his work-including the theories of special and general relativity-in language that anyone can understand. He shows how Einstein's discoveries affected everything from the development of the atom bomb to the theory of quantum mechanics. He sheds light on Einstein's personal life and beliefs, including his views on religion and politics. And he shows how Einstein's work continues to affect our world today, from nuclear power to space travel to artificial intelligence.
Group Theory in the Bedroom, and Other Mathematical Diversions
Brian Hayes - 2008
(The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
Philosophy of Physics: Space and Time
Tim Maudlin - 2012
Maudlin explains special relativity using a geometrical approach, emphasizing intrinsic space-time structure rather than coordinate systems or reference frames. He gives readers enough detail about special relativity to solve concrete physical problems while presenting general relativity in a more qualitative way, with an informative discussion of the geometrization of gravity, the bending of light, and black holes. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed of light, time travel, the direction of time, and more.Introduces nonphysicists to the philosophical foundations of space-time theoryProvides a broad historical overview, from Aristotle to EinsteinExplains special relativity geometrically, emphasizing the intrinsic structure of space-timeCovers the Twins Paradox, Galilean relativity, time travel, and moreRequires only basic algebra and no formal knowledge of physicsTim Maudlin is professor of philosophy at New York University. His books include The Metaphysics within Physics and Quantum Non-Locality and Relativity.
Spooky Action at a Distance: The Phenomenon That Reimagines Space and Time—and What It Means for Black Holes, the Big Bang, and Theories of Everything
George Musser - 2015
Space is the venue of physics; it's where things exist, where they move and take shape. Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality-the ability of two particles to act in harmony no matter how far apart they may be. It appears to be almost magical. Einstein grappled with this oddity and couldn't come to terms with it, describing it as "spooky action at a distance." More recently, the mystery has deepened as other forms of nonlocality have been uncovered. This strange occurrence, which has direct connections to black holes, particle collisions, and even the workings of gravity, holds the potential to undermine our most basic understandings of physical reality. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, George Musser sets out to answer that question, offering a provocative exploration of nonlocality and a celebration of the scientists who are trying to explain it. Musser guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the often contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of not only space and time but also the origins of the universe-and they suggest a new grand unified theory of physics. Delightfully readable, Spooky Action at a Distance is a mind-bending voyage to the frontiers of modern physics that will change the way we think about reality.Long-listed for the 2016 PEN/E. O. Wilson Literary Science Writing Award“An important book that provides insight into key new developments in our understanding of the nature of space, time and the universe. It will repay careful study.” —John Gribbin, The Wall Street Journal “An endlessly surprising foray into the current mother of physics' many knotty mysteries, the solving of which may unveil the weirdness of quantum particles, black holes, and the essential unity of nature.” —Kirkus Reviews (starred review)