Complexity: A Guided Tour


Melanie Mitchell - 2009
    Based on her work at the Santa Fe Institute and drawing on its interdisciplinary strategies, Mitchell brings clarity to the workings of complexity across a broad range of biological, technological, and social phenomena, seeking out the general principles or laws that apply to all of them. Richly illustrated, Complexity: A Guided Tour--winner of the 2010 Phi Beta Kappa Book Award in Science--offers a wide-ranging overview of the ideas underlying complex systems science, the current research at the forefront of this field, and the prospects for its contribution to solving some of the most important scientific questions of our time.

Embedded Android: Porting, Extending, and Customizing


Karim Yaghmour - 2011
    You'll also receive updates when significant changes are made, as well as the final ebook version. Embedded Android is for Developers wanting to create embedded systems based on Android and for those wanting to port Android to new hardware, or creating a custom development environment. Hackers and moders will also find this an indispensible guide to how Android works.

Cult of the Dead Cow: How the Original Hacking Supergroup Might Just Save the World


Joseph Menn - 2019
    Though until now it has remained mostly anonymous, its members invented the concept of hacktivism, released the top tool for testing password security, and created what was for years the best technique for controlling computers from afar, forcing giant companies to work harder to protect customers. They contributed to the development of Tor, the most important privacy tool on the net, and helped build cyberweapons that advanced US security without injuring anyone. With its origins in the earliest days of the Internet, the cDc is full of oddball characters -- activists, artists, even future politicians. Many of these hackers have become top executives and advisors walking the corridors of power in Washington and Silicon Valley. The most famous is former Texas Congressman and current presidential candidate Beto O'Rourke, whose time in the cDc set him up to found a tech business, launch an alternative publication in El Paso, and make long-shot bets on unconventional campaigns.Today, the group and its followers are battling electoral misinformation, making personal data safer, and battling to keep technology a force for good instead of for surveillance and oppression. Cult of the Dead Cow shows how governments, corporations, and criminals came to hold immense power over individuals and how we can fight back against them.

Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life


Albert-László Barabási - 2002
    Albert-László Barabási, the nation’s foremost expert in the new science of networks and author of Bursts, takes us on an intellectual adventure to prove that social networks, corporations, and living organisms are more similar than previously thought. Grasping a full understanding of network science will someday allow us to design blue-chip businesses, stop the outbreak of deadly diseases, and influence the exchange of ideas and information. Just as James Gleick and the Erdos–Rényi model brought the discovery of chaos theory to the general public, Linked tells the story of the true science of the future and of experiments in statistical mechanics on the internet, all vital parts of what would eventually be called the Barabási–Albert model.

Data Smart: Using Data Science to Transform Information into Insight


John W. Foreman - 2013
    Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Serious Cryptography: A Practical Introduction to Modern Encryption


Jean-Philippe Aumasson - 2017
    You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography.You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questionsEach chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

To Mock a Mockingbird and Other Logic Puzzles


Raymond M. Smullyan - 1985
    It contains many puzzles and their solutions and aims to attract many readers in an age where computer science, logic, and mathematics are becoming increasingly important and popular.

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

Being Digital


Nicholas Negroponte - 1995
    Negroponte's fans will want to get a copy of Being Digital, which is an edited version of the 18 articles he wrote for Wired about "being digital." Negroponte's text is mostly a history of media technology rather than a set of predictions for future technologies. In the beginning, he describes the evolution of CD-ROMs, multimedia, hypermedia, HDTV (high-definition television), and more. The section on interfaces is informative, offering an up-to-date history on visual interfaces, graphics, virtual reality (VR), holograms, teleconferencing hardware, the mouse and touch-sensitive interfaces, and speech recognition. In the last chapter and the epilogue, Negroponte offers visionary insight on what "being digital" means for our future. Negroponte praises computers for their educational value but recognizes certain dangers of technological advances, such as increased software and data piracy and huge shifts in our job market that will require workers to transfer their skills to the digital medium. Overall, Being Digital provides an informative history of the rise of technology and some interesting predictions for its future.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Alan Turing: The Enigma


Andrew Hodges - 1983
    His breaking of the German U-boat Enigma cipher in World War II ensured Allied-American control of the Atlantic. But Turing's vision went far beyond the desperate wartime struggle. Already in the 1930s he had defined the concept of the universal machine, which underpins the computer revolution. In 1945 he was a pioneer of electronic computer design. But Turing's true goal was the scientific understanding of the mind, brought out in the drama and wit of the famous "Turing test" for machine intelligence and in his prophecy for the twenty-first century.Drawn in to the cockpit of world events and the forefront of technological innovation, Alan Turing was also an innocent and unpretentious gay man trying to live in a society that criminalized him. In 1952 he revealed his homosexuality and was forced to participate in a humiliating treatment program, and was ever after regarded as a security risk. His suicide in 1954 remains one of the many enigmas in an astonishing life story.

The Mathematical Theory of Communication


Claude Shannon - 1949
    Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

The Essential John Nash


John F. Nash - 2001
    Since then, Sylvia Nasar's celebrated biography A Beautiful Mind, the basis of a new major motion picture, has revealed the man. The Essential John Nash reveals his work--in his own words. This book presents, for the first time, the full range of Nash's diverse contributions not only to game theory, for which he received the Nobel, but to pure mathematics--from Riemannian geometry and partial differential equations--in which he commands even greater acclaim among academics. Included are nine of Nash's most influential papers, most of them written over the decade beginning in 1949.From 1959 until his astonishing remission three decades later, the man behind the concepts "Nash equilibrium" and "Nash bargaining"--concepts that today pervade not only economics but nuclear strategy and contract talks in major league sports--had lived in the shadow of a condition diagnosed as paranoid schizophrenia. In the introduction to this book, Nasar recounts how Nash had, by the age of thirty, gone from being a wunderkind at Princeton and a rising mathematical star at MIT to the depths of mental illness.In his preface, Harold Kuhn offers personal insights on his longtime friend and colleague; and in introductions to several of Nash's papers, he provides scholarly context. In an afterword, Nash describes his current work, and he discusses an error in one of his papers. A photo essay chronicles Nash's career from his student days in Princeton to the present. Also included are Nash's Nobel citation and autobiography.The Essential John Nash makes it plain why one of Nash's colleagues termed his style of intellectual inquiry as "like lightning striking." All those inspired by Nash's dazzling ideas will welcome this unprecedented opportunity to trace these ideas back to the exceptional mind they came from.