Book picks similar to
Sparse Distributed Memory by Pentti Kanerva
ai
programming
technology
artificial-intelligence
Machine Learning for Hackers
Drew Conway - 2012
Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation.Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze sample datasets and write simple machine learning algorithms. "Machine Learning for Hackers" is ideal for programmers from any background, including business, government, and academic research.Develop a naive Bayesian classifier to determine if an email is spam, based only on its textUse linear regression to predict the number of page views for the top 1,000 websitesLearn optimization techniques by attempting to break a simple letter cipherCompare and contrast U.S. Senators statistically, based on their voting recordsBuild a "whom to follow" recommendation system from Twitter data
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Computing machinery and intelligence
Alan Turing - 1950
The paper, published in 1950 in Mind, was the first to introduce his concept of what is now known as the Turing test to the general public.Published in Mind 49: page 433-460.(Source: Wikipedia)
Advanced Rails Recipes
Mike Clark - 2007
Fueled by significant benefits and an impressive portfolio of real-world applications already in production, Rails is destined to continue making significant inroads in coming years.Each new Rails application showing up on the web adds yet more to the collective wisdom of the Rails development community. Yesterday's best practices yield to today's latest and greatest techniques, as the state of the art is continually refined in kitchens all across the Internet. Indeed, these are times of great progress.At the same time, it's easy to get left behind in the wake of progress. Advanced Rails Recipes keeps you on the cutting edge of Rails development and, more importantly, continues to turn this fast-paced framework to your advantage.Advanced Rails Recipes is filled with pragmatic recipes you'll use on every Rails project. And by taking the code in these recipes and slipping it into your application you'll not only deliver your application quicker, you'll do so with the confidence that it's done right.The book includes contributions from Aaron Batalion, Adam Keys, Adam Wiggins, Andre Lewis, Andrew Kappen, Benjamin Curtis, Ben Smith, Chris Bernard, Chris Haupt, Chris Wanstrath, Cody Fauser, Dan Benjamin, Dan Manges, Daniel Fischer, David Bock, David Chelimsky, David Heinemeier Hansson, Erik Hatcher, Ezra Zygmuntowicz, Geoffrey Grosenbach, Giles Bowkett, Greg Hansen, Gregg Pollack, Hemant Kumar, Hugh Bien, Jamie Orchard-Hays, Jamis Buck, Jared Haworth, Jarkko Laine, Jason LaPier, Jay Fields, John Dewey, Jonathan Dahl, Josep Blanquer, Josh Stephenson, Josh Susser, Kevin Clark, Luke Francl, Mark Bates, Marty Haught, Matthew Bass, Michael Slater, Mike Clark, Mike Hagedorn, Mike Mangino, Mike Naberezny, Mike Subelsky, Nathaniel Talbott, PJ Hyett, Patrick Reagan, Peter Marklund, Pierre-Alexandre Meyer, Rick Olson, Ryan Bates, Scott Barron, Tony Primerano, Val Aleksenko, and Warren Konkel.
Introducing Artificial Intelligence: A Graphic Guide
Henry Brighton - 2007
But can machines really think? Is the mind just a complicated computer program? Introducing Artificial Intelligence focuses on the issues behind one of science's most difficult problems.
Bayesian Reasoning and Machine Learning
David Barber - 2012
They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.
Neural Networks and Deep Learning
Michael Nielsen - 2013
The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.
The Spatial Web: How Web 3.0 Will Connect Humans, Machines, and AI to Transform the World
Gabriel Rene - 2019
Blade Runner, The Matrix, Star Wars, Avatar, Star Trek, Ready Player One and Avengers show us futuristic worlds where holograms, intelligent robots, smart devices, virtual avatars, digital transactions, and universe-scale teleportation work together perfectly, somehow seamlessly combining the virtual and the physical with the mechanical and the biological. Science fiction has done an excellent job describing a vision of the future where the digital and physical merge naturally into one — in a way that just works everywhere, for everyone. However, none of these visionary fictional works go so far as to describe exactly how this would actually be accomplished. While it has inspired many of us to ask the question—How do we enable science fantasy to become....science fact? The Spatial Web achieves this by first describing how exponentially powerful computing technologies are creating a great “Convergence.” How Augmented and Virtual Reality will enable us to overlay our information and imaginations onto the world. How Artificial Intelligence will infuse the environments and objects around us with adaptive intelligence. How the Internet of Things and Robotics will enable our vehicles, appliances, clothing, furniture, and homes to become connected and embodied with the power to see, feel, hear, smell, touch and move things in the world, and how Blockchain and Cryptocurrencies will secure our data and enable real-time transactions between the human, machine and virtual economies of the future. The book then dives deeply into the challenges and shortcomings of the World Wide Web, the rise of fake news and surveillance capitalism in Web 2.0 and the risk of algorithmic terrorism and biological hacking and “fake-reality” in Web 3.0. It raises concerns about the threat that emerging technologies pose in the hands of rogue actors whether human, algorithmic, corporate or state-sponsored and calls for common sense governance and global cooperation. It calls for business leaders, organizations and governments to not only support interoperable standards for software code, but critically, for ethical, and social codes as well. Authors Gabriel René and Dan Mapes describe in vivid detail how a new “spatial” protocol is required in order to connect the various exponential technologies of the 21st century into an integrated network capable of tracking and managing the real-time activities of our cities, monitoring and adjusting the supply chains that feed them, optimizing our farms and natural resources, automating our manufacturing and distribution, transforming marketing and commerce, accelerating our global economies, running advanced planet-scale simulations and predictions, and even bridging the gap between our interior individual reality and our exterior collective one. Enabling the ability for humans, machines and AI to communicate, collaborate and coordinate activities in the world at a global scale and how the thoughtful application of these technologies could lead to an unprecedented opportunity to create a truly global “networked” civilization or "Smart World.” The book artfully shifts between cyberpunk futurism, cautionary tale-telling, and life-affirming call-to-arms. It challenges us to consider the importance of today’s technological choices as individuals, organizations, and as a species, as we face the historic opportunity we have to transform the web, the world, and our very definition of reality.
A Mind at Play: How Claude Shannon Invented the Information Age
Jimmy Soni - 2017
He constructed a fleet of customized unicycles and a flamethrowing trumpet, outfoxed Vegas casinos, and built juggling robots. He also wrote the seminal text of the digital revolution, which has been called “the Magna Carta of the Information Age.” His discoveries would lead contemporaries to compare him to Albert Einstein and Isaac Newton. His work anticipated by decades the world we’d be living in today—and gave mathematicians and engineers the tools to bring that world to pass.In this elegantly written, exhaustively researched biography, Jimmy Soni and Rob Goodman reveal Claude Shannon’s full story for the first time. It’s the story of a small-town Michigan boy whose career stretched from the era of room-sized computers powered by gears and string to the age of Apple. It’s the story of the origins of our digital world in the tunnels of MIT and the “idea factory” of Bell Labs, in the “scientists’ war” with Nazi Germany, and in the work of Shannon’s collaborators and rivals, thinkers like Alan Turing, John von Neumann, Vannevar Bush, and Norbert Wiener.And it’s the story of Shannon’s life as an often reclusive, always playful genius. With access to Shannon’s family and friends, A Mind at Play brings this singular innovator and creative genius to life.
Machine Learning With Random Forests And Decision Trees: A Mostly Intuitive Guide, But Also Some Python
Scott Hartshorn - 2016
They are typically used to categorize something based on other data that you have. The purpose of this book is to help you understand how Random Forests work, as well as the different options that you have when using them to analyze a problem. Additionally, since Decision Trees are a fundamental part of Random Forests, this book explains how they work. This book is focused on understanding Random Forests at the conceptual level. Knowing how they work, why they work the way that they do, and what options are available to improve results. This book covers how Random Forests work in an intuitive way, and also explains the equations behind many of the functions, but it only has a small amount of actual code (in python). This book is focused on giving examples and providing analogies for the most fundamental aspects of how random forests and decision trees work. The reason is that those are easy to understand and they stick with you. There are also some really interesting aspects of random forests, such as information gain, feature importances, or out of bag error, that simply cannot be well covered without diving into the equations of how they work. For those the focus is providing the information in a straight forward and easy to understand way.
Quantum Computing Since Democritus
Scott Aaronson - 2013
Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.
Prediction Machines: The Simple Economics of Artificial Intelligence
Ajay Agrawal - 2018
But facing the sea change that AI will bring can be paralyzing. How should companies set strategies, governments design policies, and people plan their lives for a world so different from what we know? In the face of such uncertainty, many analysts either cower in fear or predict an impossibly sunny future.But in Prediction Machines, three eminent economists recast the rise of AI as a drop in the cost of prediction. With this single, masterful stroke, they lift the curtain on the AI-is-magic hype and show how basic tools from economics provide clarity about the AI revolution and a basis for action by CEOs, managers, policy makers, investors, and entrepreneurs.When AI is framed as cheap prediction, its extraordinary potential becomes clear:
Prediction is at the heart of making decisions under uncertainty. Our businesses and personal lives are riddled with such decisions.
Prediction tools increase productivity--operating machines, handling documents, communicating with customers.
Uncertainty constrains strategy. Better prediction creates opportunities for new business structures and strategies to compete.
Penetrating, fun, and always insightful and practical, Prediction Machines follows its inescapable logic to explain how to navigate the changes on the horizon. The impact of AI will be profound, but the economic framework for understanding it is surprisingly simple.
The Elements of Computing Systems: Building a Modern Computer from First Principles
Noam Nisan - 2005
The books also provides a companion web site that provides the toold and materials necessary to build the hardware and software.
Professional ASP.NET Design Patterns
Scott Millett - 2008
Design patterns are time-tested solutions to recurring problems, letting the designer build programs on solutions that have already proved effective Provides developers with more than a dozen ASP.NET examples showing standard design patterns and how using them helpsbuild a richer understanding of ASP.NET architecture, as well as better ASP.NET applications Builds a solid understanding of ASP.NET architecture that can be used over and over again in many projects Covers ASP.NET code to implement many standard patterns including Model-View-Controller (MVC), ETL, Master-Master Snapshot, Master-Slave-Snapshot, Facade, Singleton, Factory, Single Access Point, Roles, Limited View, observer, page controller, common communication patterns, and more
The Sciences of the Artificial
Herbert A. Simon - 1969
There are updates throughout the book as well. These take into account important advances in cognitive psychology and the science of design while confirming and extending the book's basic thesis: that a physical symbol system has the necessary and sufficient means for intelligent action. The chapter "Economic Reality" has also been revised to reflect a change in emphasis in Simon's thinking about the respective roles of organizations and markets in economic systems."People sometimes ask me what they should read to find out about artificial intelligence. Herbert Simon's book The Sciences of the Artificial is always on the list I give them. Every page issues a challenge to conventional thinking, and the layman who digests it well will certainly understand what the field of artificial intelligence hopes to accomplish. I recommend it in the same spirit that I recommend Freud to people who ask about psychoanalysis, or Piaget to those who ask about child psychology: If you want to learn about a subject, start by reading its founding fathers." -- George A. Miller