G. W. Leibniz's Monadology: An Edition for Students


Gottfried Wilhelm Leibniz - 1714
    Leibniz' Monadology, one of the most important pieces of the Leibniz corpus, is at once one of the great classics of modern philosophy & one of its most puzzling productions. Because the essay is written in so compactly condensed a fashion, for almost three centuries it has baffled & beguiled those who read it for the first time. Nicholas Rescher accompanies the text of the Monadology section-by-section with relevant excerpts from some of Leibniz' widely scattered discussions of the matters at issue. The result serves a dual purpose of providing a commentary of the Monadology by Leibniz himself, while at the same time supplying an exposition of his philosophy using the Monadology as an outline. The book contains all the materials that even the most careful study of this text could require: a detailed overview of the philosophical background of the work & of its bibliographic ramifications; a presentation of the original French text together with a new, closely faithful English translation; a selection of other relevant Leibniz texts; & a detailed commentary. Rescher also provides a survey of Leibniz' use of analogies & three separate indices of key terms & expressions, Leibniz' French terminology, & citations. Rescher's edition of the Monadology presents Leibniz' ideas faithfully, accurately & accessibly, making it especially valuable to scholars & students alike.

The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser


Jason Rosenhouse - 2009
    Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.

Symmetry: The Ordering Principle


David G. Wade - 2006
    In this little book Welsh writer and artist David Wade paints a picture of one of the most elusive and pervasive concepts known to man.

Cosmology: Philosophy & Physics


alexis karpouzos - 2015
    Cosmic Universe and Human History, microcosm and macrocosm, inorganic and living matter coexist and form a unique unity manifested in multiple forms. The Physical and the Mental constitute the form and the content of the World. The world does not consist of subjects and objects, the “subject” and the “object” are metaphysical abstractions of the single and indivisible Wholeness. Man’s finite knowledge separates the Whole into parts and studies fragmentarily the beings. The Wholeness is manifested in multiple forms and each form encapsulates the Wholeness. The rational explanation of the excerpts and the intuitive apprehension of the Wholeness are required to combine and create the open thought and the holistic knowledge. This means that the measurement should be defined by the ''measure'', but the responsibility for determining the ''measure'' depends on the man. This requires that man overcomes the anthropocentric arrogance and the narcissistic selfishness and he joins the Cosmic World in a friendly and creative manner.

Sacred Number: The Secret Quality of Quantities


Miranda Lundy - 2005
    Beautifully illustrated with old engravings as well as contemporary imagery, Sacred Number introduces basic counting systems; significant numbers from major religious texts; the importance of astronomy, geometry, and music to number quality; how numbers affect architecture. Lundy explains why the ideas of Pythagoras still resonate, and she profiles each number from one to ten to show its distinct qualities: why, for example, the golden section is associated with five, and seven with the Virgin Mary.

A Concise Introduction to Logic [with CD-ROM]


Patrick J. Hurley - 1972
    Inside: Logic Resource CD-ROM

The Psychology of Invention in the Mathematical Field


Jacques Hadamard - 1945
    Role of the unconscious in invention; the medium of ideas — do they come to mind in words? in pictures? in mathematical terms? Much more. "It is essential for the mathematician, and the layman will find it good reading." — Library Journal.

Q.E.D.: Beauty in Mathematical Proof


Burkard Polster - 2004
    presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

The History of the Calculus and Its Conceptual Development


Carl B. Boyer - 1959
    Early beginnings in antiquity, medieval contributions, and a century of anticipation lead up to a consideration of Newton and Leibniz, the period of indecison that followed them, and the final rigorous formulation that we know today.

How to Ace Calculus: The Streetwise Guide


Colin Conrad Adams - 1998
    Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.

Thinking Statistically


Uri Bram - 2011
    Along the way we’ll learn how selection bias can explain why your boss doesn’t know he sucks (even when everyone else does); how to use Bayes’ Theorem to decide if your partner is cheating on you; and why Mark Zuckerberg should never be used as an example for anything. See the world in a whole new light, and make better decisions and judgements without ever going near a t-test. Think. Think Statistically.

Free Will


Gary Watson - 1982
    This volume brings together some of the most influential contributions to the topic of free will during the past 50 years, as well as some notable recent work.

The Whys of a Philosophical Scrivener


Martin Gardner - 1983
    Exploring issues that range from faith to prayer to evil to immortality, and far beyond, Garnder challenges the discerning reader with fundamental questions of classical philosophy and life's greater meanings.Recalling such philosophers was Wittgenstein and Arendt, The Whys of Philosophical Scrivener embodies Martin Garner's unceasing interest and joy in the impenetrable mysteries of life.

Introduction to Graph Theory


Richard J. Trudeau - 1994
    This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.