Erwin Schrödinger and the Quantum Revolution


John Gribbin - 2012
    He won the Nobel Prize in 1933 and is best known for his thought experiment of a cat in a box, both alive and dead at the same time, which revealed the seemingly paradoxical nature of quantum mechanics.Schrödinger was working at one of the most fertile and creative moments in the whole history of science. By the time he was starting university in 1906, Einstein had already published his revolutionary papers on relativity. Now the baton of scientific progress was being passed to a new generation: Werner Heisenberg, Paul Dirac, Niels Bohr, and of course, Schrödinger himself.In this riveting biography John Gribbin takes us into the heart of the quantum revolution. He tells the story of Schrödinger's surprisingly colourful life (he arrived for a position at Oxford University with both his wife and mistress). And with his trade mark accessible style and popular touch explains the fascinating world of quantum mechanics, which underpins all of modern science.

Feynman's Rainbow: A Search for Beauty in Physics and in Life


Leonard Mlodinow - 2004
    Drawing on transcripts from their meetings during their time together at Cal Tech, Mlodinow shares Feynman's provocative thoughts and observations. At once a moving portrait of a friendship and an affecting account of Feynman's final, creative years, this book celebrates the inspiring legacy of one of the greatest thinkers of our time.

Einstein's Cosmos: How Albert Einstein's Vision Transformed Our Understanding of Space and Time


Michio Kaku - 2004
    Keying Einstein's crucial discoveries to the simple mental images that inspired them, Michio Kaku finds a revealing new way to discuss his ideas, and delivers an appealing and always accessible introduction to Einstein's work.

Quantum Enigma: Physics Encounters Consciousness


Bruce Rosenblum - 2006
    Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories.Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. Quantum Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schr�dinger showed that it absurdly allowed a cat to be in a superposition simultaneously dead and alive. Einstein derided the theory's spooky interactions. With Bell's Theorem, we now know Schr�dinger's superpositions and Einstein's spooky interactions indeed exist.Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation.Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial.Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing.Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves.

Professor Maxwell’s Duplicitous Demon: The Life and Science of James Clerk Maxwell


Brian Clegg - 2019
    But ask a physicist and there’s no doubt that James Clerk Maxwell will be near the top of the list.  Maxwell, an unassuming Victorian Scotsman, explained how we perceive colour. He uncovered the way gases behave. And, most significantly, he transformed the way physics was undertaken in his explanation of the interaction of electricity and magnetism, revealing the nature of light and laying the groundwork for everything from Einstein’s special relativity to modern electronics.   Along the way, he set up one of the most enduring challenges in physics, one that has taxed the best minds ever since. ‘Maxwell’s demon’ is a tiny but thoroughly disruptive thought experiment that suggests the second law of thermodynamics, the law that governs the flow of time itself, can be broken. This is the story of a groundbreaking scientist, a great contributor to our understanding of the way the world works, and his duplicitous demon.

The Sleepwalkers: A History of Man's Changing Vision of the Universe


Arthur Koestler - 1959
    In this masterly synthesis, Arthur Koestler cuts through the sterile distinction between 'sciences' and 'humanities' to bring to life the whole history of cosmology from the Babylonians to Newton. He shows how the tragic split between science and religion arose and how, in particular, the modern world-view replaced the medieval world-view in the scientific revolution of the seventeenth century. He also provides vivid and judicious pen-portraits of a string of great scientists and makes clear the role that political bias and unconscious prejudice played in their creativity.

What Is Life? with Mind and Matter and Autobiographical Sketches


Erwin Schrödinger - 1944
    The book was based on a course of public lectures delivered by Schrödinger in February 1943 at Trinity College, Dublin. Schrödinger's lecture focused on one important question: "how can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?" In the book, Schrödinger introduced the idea of an "aperiodic crystal" that contained genetic information in its configuration of covalent chemical bonds. In the 1950s, this idea stimulated enthusiasm for discovering the genetic molecule and would give both Francis Crick and James Watson initial inspiration in their research.

Mendeleyev's Dream


Paul Strathern - 2001
    The story of how we got from there to here is full of fascinating people, and in this elegant, entertaining book, Paul Strathern introduces us to ancient philosophers, medieval alchemists, and the earliest chemists-and to Dimitri Mendeleyev, the card-playing nineteenth-century Russian who claimed that the answers came to him in a dream. "Chemistry has been a neglected area of science writing, and Mendeleyev, the king of chemistry, is a largely forgotten genius. [This book] goes a long way toward correcting this injustice." (Simon Singh, author of Fermat's Last Theorem, in the Sunday Telegraph)

Ideas and Opinions


Albert Einstein - 1922
    The selections range from his earliest days as a theoretical physicist to his death in 1955; from such subjects as relativity, nuclear war or peace, and religion and science, to human rights, economics, and government.

A World Without Time: The Forgotten Legacy of Gödel And Einstein


Palle Yourgrau - 2004
    By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

Brilliant Blunders: From Darwin to Einstein - Colossal Mistakes by Great Scientists That Changed Our Understanding of Life and the Universe


Mario Livio - 2013
    Nobody is perfect. And that includes five of the greatest scientists in history—Charles Darwin, William Thomson (Lord Kelvin), Linus Pauling, Fred Hoyle, and Albert Einstein. But the mistakes that these great luminaries made helped advance science. Indeed, as Mario Livio explains, science thrives on error, advancing when erroneous ideas are disproven.As a young scientist, Einstein tried to conceive of a way to describe the evolution of the universe at large, based on General Relativity—his theory of space, time, and gravity. Unfortunately he fell victim to a misguided notion of aesthetic simplicity. Fred Hoyle was an eminent astrophysicist who ridiculed an emerging theory about the origin of the universe that he dismissively called “The Big Bang.” The name stuck, but Hoyle was dead wrong in his opposition.They, along with Darwin (a blunder in his theory of Natural Selection), Kelvin (a blunder in his calculation of the age of the earth), and Pauling (a blunder in his model for the structure of the DNA molecule), were brilliant men and fascinating human beings. Their blunders were a necessary part of the scientific process. Collectively they helped to dramatically further our knowledge of the evolution of life, the Earth, and the universe.

The Varieties of Scientific Experience: A Personal View of the Search for God


Carl Sagan - 2006
     Carl Sagan is considered one of the greatest scientific minds of our time. His remarkable ability to explain science in terms easily understandable to the layman in bestselling books such as Cosmos, The Dragons of Eden, and The Demon-Haunted World won him a Pulitzer Prize and placed him firmly next to Isaac Asimov, Stephen Jay Gould, and Oliver Sachs as one of the most important and enduring communicators of science. In December 2006 it will be the tenth anniversary of Sagan's death, and Ann Druyan, his widow and longtime collaborator, will mark the occasion by releasing Sagan's famous "Gifford Lectures in Natural Theology," The Varieties of Scientific Experience: A Personal View of the Search for God. The chance to give the Gifford Lectures is an honor reserved for the most distinguished scientists and philosophers of our civilization. In 1985, on the grand occasion of the centennial of the lectureship, Carl Sagan was invited to give them. He took the opportunity to set down in detail his thoughts on the relationship between religion and science as well as to describe his own personal search to understand the nature of the sacred in the vastness of the cosmos. The Varieties of Scientific Experience, edited, updated and with an introduction by Ann Druyan, is a bit like eavesdropping on a delightfully intimate conversation with the late great astronomer and astrophysicist. In his charmingly down-to-earth voice, Sagan easily discusses his views on topics ranging from manic depression and the possibly chemical nature of transcendance to creationism and so-called intelligent design to the likelihood of intelligent life on other planets to the likelihood of nuclear annihilation of our own to a new concept of science as "informed worship." Exhibiting a breadth of intellect nothing short of astounding, he illuminates his explanations with examples from cosmology, physics, philosophy, literature, psychology, cultural anthropology, mythology, theology, and more. Sagan's humorous, wise, and at times stunningly prophetic observations on some of the greatest mysteries of the cosmos have the invigorating effect of stimulating the intellect, exciting the imagination, and reawakening us to the grandeur of life in the cosmos.

The Invention of Air: A Story of Science, Faith, Revolution, and the Birth of America


Steven Johnson - 2008
    Priestley represented a unique synthesis: by the 1780s, he had established himself as one of the world's most celebrated scientists, most prominent religious figures, and most outspoken political thinkers. Yet he would also have become one of the most hated men in all of his native England. When an angry mob burned down his house in Birmingham, Priestley and his family set sail for Pennsylvania.In the nascent United States, Priestley hoped to find the freedom to bridge the disciplines that had governed his life, to find a quiet lab and a receptive pulpit. Once he arrived, as a result of his close relationships with the Founding Fathers—Jefferson credited Priestley as the man who prevented him from abandoning Christianity—Priestley found himself at the center of what would go down as one of the seminal debates in American history. And as Johnson brilliant charts, Priestley exerted profound if little-known influence on the shape and course of this great experiment in nation-building.As in his most recent bestselling work, The Ghost Map, Steven Johnson here uses a dramatic historical story to explore themes that have long engaged him: innovation and the way new ideas emerge and spread, and the environments that foster these breakthroughs. As he did in Everything Bad is Good for You, he upsets some fundamental assumptions about the world we live in—namely, what it means when we invoke the Founding Fathers—and replaces them with a clear-eyed, eloquent assessment of where we stand today.

Perfectly Reasonable Deviations from the Beaten Track: Letters of Richard P. Feynman


Richard P. Feynman - 2004
    Even before he won the Nobel Prize in 1965, his unorthodox and spellbinding lectures on physics secured his reputation amongst students and seekers around the world. It was his outsized love for life, however, that earned him the status of an American cultural icon - here was an extraordinary intellect devoted to the proposition that the thrill of discovery was matched only by the joy of communicating it to others." In this career-spanning collection of letters, many published here for the first time, we are able to see this side of Feynman like never before. Perfectly Reasonable Deviations from the Beaten Track covers a dazzling array of topics and themes, scientific developments and personal histories. With missives to and from scientific luminaries, as well as letters to and from fans, family, students, crackpots, as well as everyday people eager for Feynman's wisdom and counsel, the result is a de facto guide to life, and eloquent testimony to the human quest for knowledge at all levels.Published in the UK as Don't You Have Time to Think?

Black Holes & Time Warps: Einstein's Outrageous Legacy


Kip S. Thorne - 1994
    In this masterfully written and brilliantly informed work of scientific history and explanation, Dr. Thorne, the Feynman Professor of Theoretical Physics at Caltech, leads his readers through an elegant, always human, tapestry of interlocking themes, coming finally to a uniquely informed answer to the great question: what principles control our universe and why do physicists think they know the things they think they know? Stephen Hawking's A Brief History of Time has been one of the greatest best-sellers in publishing history. Anyone who struggled with that book will find here a more slowly paced but equally mind-stretching experience, with the added fascination of a rich historical and human component.