Thermodynamics


Enrico Fermi - 1956
    Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entropy (properties of cycles, entropy of a system whose states can be represented on a (V, p) diagram, Clapeyron and Van der Waals equations), thermodynamic potentials (free energy, thermodynamic potential at constant pressure, the phase rule, thermodynamics of the reversible electric cell), gaseous reactions (chemical equilibria in gases, Van't Hoff reaction box, another proof of the equation of gaseous equilibria, principle of Le Chatelier), the thermodynamics of dilute solutions (osmotic pressure, chemical equilibria in solutions, the distribution of a solute between 2 phases vapor pressure, boiling and freezing points), the entropy constant (Nernst's theorem, thermal ionization of a gas, thermionic effect, etc.).

Boltzmanns Atom: The Great Debate That Launched a Revolution in Physics


David Lindley - 2001
    Before this explosive growth into the modern age took place, an all-but-forgotten genius strove for forty years to win acceptance for the atomic theory of matter and an altogether new way of doing physics. Ludwig Boltz-mann battled with philosophers, the scientific establishment, and his own potent demons. His victory led the way to the greatest scientific achievements of the twentieth century. Now acclaimed science writer David Lindley portrays the dramatic story of Boltzmann and his embrace of the atom, while providing a window on the civilized world that gave birth to our scientific era. Boltzmann emerges as an endearingly quixotic character, passionately inspired by Beethoven, who muddled through the practical matters of life in a European gilded age. Boltzmann's story reaches from fin de siecle Vienna, across Germany and Britain, to America. As the Habsburg Empire was crumbling, Germany's intellectual might was growing; Edinburgh in Scotland was one of the most intellectually fertile places on earth; and, in America, brilliant independent minds were beginning to draw on the best ideas of the bureaucratized old world.Boltzmann's nemesis in the field of theoretical physics at home in Austria was Ernst Mach, noted today in the term Mach I, the speed of sound. Mach believed physics should address only that which could be directly observed. How could we know that frisky atoms jiggling about corresponded to heat if we couldn't see them? Why should we bother with theories that only told us what would probably happen, rather than making an absolute prediction? Mach and Boltzmann both believed in the power of science, but their approaches to physics could not have been more opposed. Boltzmann sought to explain the real world, and cast aside any philosophical criteria. Mach, along with many nineteenth-century scientists, wanted to construct an empirical edifice of absolute truths that obeyed strict philosophical rules. Boltzmann did not get on well with authority in any form, and he did his best work at arm's length from it. When at the end of his career he engaged with the philosophical authorities in the Viennese academy, the results were personally disastrous and tragic. Yet Boltzmann's enduring legacy lives on in the new physics and technology of our wired world.Lindley's elegant telling of this tale combines the detailed breadth of the best history, the beauty of theoretical physics, and the psychological insight belonging to the finest of novels.

Schaum's Outline of College Physics


Frederick J. Bueche - 2006
    Provides a review of introductory noncalculus-based physics for those who do not have a strong background in mathematics.

Advanced Engineering Mathematics


Dennis G. Zill - 1992
    A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0

Strength of Materials, Part 1 and Part 2


Stephen P. Timoshenko - 1983
    1: Elementary Theory and Problems contains the essential material that is usually covered in required courses of strength of materials in our engineering schools. Strength of Materials - Part. 2: Advanced Theory and Problems contains the later developments that are of practical importance in the fields of strength of materials, and theory of elasticity. Complete derivations of problems of practical interest are given in most cases. The books are illustrated with a number of problems to which solutions are presented. In many cases, the problems are chosen so as to widen the field covered by the text and to illustrate the application of the theory in the solution of design problems.

Semiconductor Physics and Devices: Basic Principles


Donald A. Neamen - 1992
    The goal of this book is to bring together quantum mechanics, the quantum theory of solids, semiconductor material physics, and semiconductor device physics in a clear and understandable way.

Fundamentals of Engineering Thermodynamics [With Student Resource Access Code]


Michael J. Moran - 1988
    This leading text uses many relevant engineering-based situations to help students model and solve problems.

James Clerk Maxwell: A Life from Beginning to End (Scottish History Book 4)


Hourly History - 2019
     Free BONUS Inside! James Clerk Maxwell was a brilliant mathematician and scientist, but his impact on this world goes even deeper than that. Maxwell singlehandedly overturned what was believed to be fact with a whole new outlook on fundamental aspects of the universe. Maxwell is often credited as one of the first pioneers of quantum physics and rightly so because it was Maxwell who envisioned particles such as electrons spinning inside an electric current before anyone else had so much as guessed that such a thing might be possible. The rarefied scientific mind of James Clerk Maxwell has left us with a lasting legacy of incredible innovations in thought that still affect us to this very day. Read this book in order to get a full grasp of just what kind of enlightening fire this nineteenth-century Prometheus has gifted all of humanity with. Discover a plethora of topics such as Early Life and Loss The World’s First Color Photograph Maxwell’s Equations The Cavendish Laboratory Illness and Death And much more! So if you want a straightforward book on James Clerk Maxwell, simply scroll up and click the "Buy now" button for instant access!

Schaum's Outline of Complex Variables


Murray R. Spiegel - 1968
    Contains 640 problems including solutions; additional practice problems with answers; explanations of complex variable theory; coverage of applications of complex variables in engineering, physics, and elsewhere, with accompanying sample problems and solutions.

Great Formulas Explained - Physics, Mathematics, Economics


Metin Bektas - 2013
    Each formula is explained gently and in great detail, including a discussion of all the quanitites involved and examples that will make clear how and where to apply it. On top of that, there are plenty of illustrations that support the explanations and make the reading experience even more vivid.The book covers a wide range of diverse topics: acoustics, explosions, hurricanes, pipe flow, car traffic, gravity, satellites, roller coasters, flight, conservation laws, trigonometry, equations, inflation, loans, and many more. From the author of "Statistical Snacks" and "Business Math Basics - Practical and Simple".

Introductory Circuit Analysis


Robert L. Boylestad - 1968
    Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.

The Star Builders: Nuclear Fusion and the Race to Power the Planet


Arthur Turrell - 2021
    The ability to duplicate that process in a lab, once thought impossible, may now be closer than we think. Today, teams of scientists around the world are being assembled by the boldest entrepreneurs, big business, and governments to solve what is the most difficult technological challenge humanity has ever faced: building the equivalent of a star on earth. If their plans to capture star power are successful, they will unlock thousands, potentially millions, of years of clean, carbon-free energy. Not only would controlled nuclear fusion help solve the climate crisis, it could also make other highly desired technological ambitions possible—like journeying to the stars. Given the rising alarm over deterioration of the environment, and the strides being made in laser and magnetic field technology, powerful momentum is gathering behind fusion and the possibilities it offers. In The Star Builders, award-winning young plasma physicist Arthur Turrell “offers an optimistic outlook for the future of fusion power and is adamant about the need to invest in it” (The New York Times). Turrell describes fascinating star machines with ten times as many parts as the NASA Space Shuttle, and structures that extend over 400 acres in an accessible and entertaining account, spotlighting the individuals, firms, and institutions racing for the finish line: science-minded entrepreneurs like Jeff Bezos and Peter Thiel, companies like Goldman Sachs and Google, universities like Oxford and MIT, and virtually every rich nation. It’s an exciting and game-changing international quest that will make all of us winners.

Atom


Piers Bizony - 2004
    Its tale is one riddled with jealousy, rivalry, missed opportunities and moments of genius. Piers Bizony tells the story of the young misfit New Zealander, Ernest Rutherford, who showed that the atom consisted mainly of empty space, a discovery that turned 200 years of classical physics on its head, and the brilliant Dane, Niels Bohr, who made the next great leap into the incredible world of quantum theory. Yet he and a handful of other Young Turks in this revolutionary new science weren't prepared for the shocks that Nature had up her sleeve. At the dawn of the Atomic Age, a dangerous new force was unleashed with terrifying speed...

The Instant Physicist: An Illustrated Guide


Richard A. Muller - 2010
    Muller demonstrated in his recent bestseller, Physics for Future Presidents, that he has a unique talent for delivering the “aha” moment—making difficult topics accessible. In The Instant Physicist he shows his ability to entertain, too, by presenting the best of the scientific curiosities he has assembled over his distinguished career. Assisted by award-winning cartoonist Joey Manfre, who has created an original color cartoon for each “physics bite,” Muller will have readers chuckling while they’re absorbing more science than they ever thought possible. From the surprising (chocolate has more energy in it than TNT) to the scary (even kids can make a bomb), this book contains a revelation on every page. Once finished with this page-turner, readers will be the stars of their next cocktail party.The book consists of a color cartoon on each right-hand page and explanatory text on the left.

Warmth Disperses and Time Passes: The History of Heat


Hans Christian Von Baeyer - 1998
    With his trademark elegant prose, eye for lively detail, and gift for lucid explanation, Professor von Baeyer turns the contemplation of a cooling coffee cup into a beguiling portrait of the birth of a science with relevance to almost every aspect of our lives.