A New Kind of Science


Stephen Wolfram - 1997
    Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton

The Art of Problem Solving Vol. 2: And Beyond


Sandor Leholzky - 2003
    The Art of Problem Solving, Volume 2, is the classic problem solving textbook used by many successful high school math teams and enrichment programs and have been an important building block for students who, like the authors, performed well enough on the American Mathematics Contest series to qualify for the Math Olympiad Summer Program which trains students for the United States International Math Olympiad team.Volume 2 is appropriate for students who have mastered the problem solving fundamentals presented in Volume 1 and are ready for a greater challenge. Although the Art of Problem Solving is widely used by students preparing for mathematics competitions, the book is not just a collection of tricks. The emphasis on learning and understanding methods rather than memorizing formulas enables students to solve large classes of problems beyond those presented in the book.Speaking of problems, the Art of Problem Solving, Volume 2, contains over 500 examples and exercises culled from such contests as the Mandelbrot Competition, the AMC tests, and ARML. Full solutions (not just answers!) are available for all the problems in the solution manual.

Schaum's Outline of Differential Equations


Richard Bronson - 2006
    Thoroughly updated, this edition offers new, faster techniques for solving differential equations generated by the emergence of high-speed computers.

Classical Sociological Theory


Craig J. Calhoun - 2002
    It explores the pioneering minds of Marx, Durkheim, and Weber, who developed our modern idea of society; and looks at the powerful influence of the works of early the sociologists Mead, Simmel, Freud, and Du Bois.

Fundamentals of Physics


David Halliday - 2004
    A unique combination of authoritative content and stimulating applications. * Numerous improvements in the text, based on feedback from the many users of the sixth edition (both instructors and students) * Several thousand end-of-chapter problems have been rewritten to streamline both the presentations and answers * 'Chapter Puzzlers' open each chapter with an intriguing application or question that is explained or answered in the chapter * Problem-solving tactics are provided to help beginning Physics students solve problems and avoid common error * The first section in every chapter introduces the subject of the chapter by asking and answering, "What is Physics?" as the question pertains to the chapter * Numerous supplements available to aid teachers and students The extended edition provides coverage of developments in Physics in the last 100 years, including: Einstein and Relativity, Bohr and others and Quantum Theory, and the more recent theoretical developments like String Theory.

Probability, Random Variables and Stochastic Processes with Errata Sheet


Athanasios Papoulis - 2001
    Unnikrishna Pillai of Polytechnic University. The book is intended for a senior/graduate level course in probability and is aimed at students in electrical engineering, math, and physics departments. The authors' approach is to develop the subject of probability theory and stochastic processes as a deductive discipline and to illustrate the theory with basic applications of engineering interest. Approximately 1/3 of the text is new material--this material maintains the style and spirit of previous editions. In order to bridge the gap between concepts and applications, a number of additional examples have been added for further clarity, as well as several new topics.

On Truth and Lies in a Nonmoral Sense


Friedrich Nietzsche - 1873
    It deals largely with epistemological questions of truth and language, including the formation of concepts. Every word immediately becomes a concept, inasmuch as it is not intended to serve as a reminder of the unique and wholly individualized original experience to which it owes its birth, but must at the same time fit innumerable, more or less similar cases—which means, strictly speaking, never equal—in other words, a lot of unequal cases. Every concept originates through our equating what is unequal. According to Paul F. Glenn, Nietzsche is arguing that "concepts are metaphors which do not correspond to reality." Although all concepts are human inventions (created by common agreement to facilitate ease of communication), human beings forget this fact after inventing them, and come to believe that they are "true" and do correspond to reality. Thus Nietzsche argues that "truth" is actually: A mobile army of metaphors, metonyms, and anthropomorphisms—in short, a sum of human relations which have been enhanced, transposed, and embellished poetically and rhetorically, and which after long use seem firm, canonical, and obligatory to a people: truths are illusions about which one has forgotten that this is what they are; metaphors which are worn out and without sensuous power; coins which have lost their pictures and now matter only as metal, no longer as coins. These ideas about truth and its relation to human language have been particularly influential among postmodern theorists, and "On Truth and Lies in a Nonmoral Sense" is one of the works most responsible for Nietzsche's reputation (albeit a contentious one) as "the godfather of postmodernism."

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Schaum's Outline of Calculus


Frank Ayres Jr. - 1990
    They'll also find the related analytic geometry much easier. The clear review of algebra and geometry in this edition will make calculus easier for students who wish to strengthen their knowledge in these areas. Updated to meet the emphasis in current courses, this new edition of a popular guide--more than 104,000 copies were bought of the prior edition--includes problems and examples using graphing calculators..

Coding the Matrix: Linear Algebra through Computer Science Applications


Philip N. Klein - 2013
    Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program"

Understanding Symbolic Logic


Virginia Klenk - 1983
    Each chapter, or unit, is divided into easily comprehended small "bites" that enable learners to master the material step-by-step, rather than being overwhelmed by masses of information covered too quickly. The book provides extremely detailed explanations of procedures and techniques, and was written in the conviction that anyone can thoroughly master its content. A four-part organization covers sentential logic, monadic predicate logic, relational predicate logic, and extra credit units that glimpse into alternative methods of logic and more advanced topics. For individuals interested in the formal study of logic.

Introduction to Probability


Dimitri P. Bertsekas - 2002
    This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.

Handbook of Applied Cryptography


Alfred J. Menezes - 1996
    Standards are emerging to meet the demands for cryptographic protection in most areas of data communications. Public-key cryptographic techniques are now in widespread use, especially in the financial services industry, in the public sector, and by individuals for their personal privacy, such as in electronic mail. This Handbook will serve as a valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography. It is a necessary and timely guide for professionals who practice the art of cryptography. The Handbook of Applied Cryptography provides a treatment that is multifunctional: It serves as an introduction to the more practical aspects of both conventional and public-key cryptographyIt is a valuable source of the latest techniques and algorithms for the serious practitionerIt provides an integrated treatment of the field, while still presenting each major topic as a self-contained unitIt provides a mathematical treatment to accompany practical discussionsIt contains enough abstraction to be a valuable reference for theoreticians while containing enough detail to actually allow implementation of the algorithms discussedNow in its third printing, this is the definitive cryptography reference that the novice as well as experienced developers, designers, researchers, engineers, computer scientists, and mathematicians alike will use.

A History of Mathematics


Carl B. Boyer - 1968
    The material is arranged chronologically beginning with archaic origins and covers Egyptian, Mesopotamian, Greek, Chinese, Indian, Arabic and European contributions done to the nineteenth century and present day. There are revised references and bibliographies and revised and expanded chapters on the nineteeth and twentieth centuries.

Book of Proof


Richard Hammack - 2009
    It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. Topics include sets, logic, counting, methods of conditional and non-conditional proof, disproof, induction, relations, functions and infinite cardinality.