A Mathematician's Apology


G.H. Hardy - 1940
    H. Hardy was one of this century's finest mathematical thinkers, renowned among his contemporaries as a 'real mathematician ... the purest of the pure'. He was also, as C. P. Snow recounts in his Foreword, 'unorthodox, eccentric, radical, ready to talk about anything'. This 'apology', written in 1940 as his mathematical powers were declining, offers a brilliant and engaging account of mathematics as very much more than a science; when it was first published, Graham Greene hailed it alongside Henry James's notebooks as 'the best account of what it was like to be a creative artist'. C. P. Snow's Foreword gives sympathetic and witty insights into Hardy's life, with its rich store of anecdotes concerning his collaboration with the brilliant Indian mathematician Ramanujan, his aphorisms and idiosyncrasies, and his passion for cricket. This is a unique account of the fascination of mathematics and of one of its most compelling exponents in modern times.

The Mathematical Experience


Philip J. Davis - 1980
    This is the classic introduction for the educated lay reader to the richly diverse world of mathematics: its history, philosophy, principles, and personalities.

Mathematics: The Loss of Certainty


Morris Kline - 1980
    Mathematics: The Loss of Certainty refutes that myth.

Logical Positivism


A.J. Ayer - 1966
    The book gives more than it promises, the text as well as the extensive bibliography including contributions of the analysts."-Hibbert Journal

Wholeness and the Implicate Order


David Bohm - 1980
    Although deeply influenced by Einstein, he was also, more unusually for a scientist, inspired by mysticism. Indeed, in the 1970s and 1980s he made contact with both J. Krishnamurti and the Dalai Lama whose teachings helped shape his work. In both science and philosophy, Bohm's main concern was with understanding the nature of reality in general and of consciousness in particular. In this classic work he develops a theory of quantum physics which treats the totality of existence as an unbroken whole. Writing clearly and without technical jargon, he makes complex ideas accessible to anyone interested in the nature of reality.

An Introduction to Non-Classical Logic


Graham Priest - 2001
    Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.

Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe


Amir D. Aczel - 2005
    His apothegm "Cogito, ergo sum" marked the birth of the mind-body problem, while his creation of so-called Cartesian coordinates have made our physical and intellectual conquest of physical space possible.But Descartes had a mysterious and mystical side, as well. Almost certainly a member of the occult brotherhood of the Rosicrucians, he kept a secret notebook, now lost, most of which was written in code. After Descartes's death, Gottfried Leibniz, inventor of calculus and one of the greatest mathematicians in history, moved to Paris in search of this notebook--and eventually found it in the possession of Claude Clerselier, a friend of Descartes. Leibniz called on Clerselier and was allowed to copy only a couple of pages--which, though written in code, he amazingly deciphered there on the spot. Leibniz's hastily scribbled notes are all we have today of Descartes's notebook, which has disappeared.Why did Descartes keep a secret notebook, and what were its contents? The answers to these questions lead Amir Aczel and the reader on an exciting, swashbuckling journey, and offer a fascinating look at one of the great figures of Western culture.

Elliptic Tales: Curves, Counting, and Number Theory


Avner Ash - 2012
    The Clay Mathematics Institute is offering a prize of $1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem.The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from some very deep--and often very mystifying--mathematical ideas. Using only basic algebra and calculus while presenting numerous eye-opening examples, Ash and Gross make these ideas accessible to general readers, and in the process venture to the very frontiers of modern mathematics. Along the way, they give an informative and entertaining introduction to some of the most profound discoveries of the last three centuries in algebraic geometry, abstract algebra, and number theory. They demonstrate how mathematics grows more abstract to tackle ever more challenging problems, and how each new generation of mathematicians builds on the accomplishments of those who preceded them. Ash and Gross fully explain how the Birch and Swinnerton-Dyer Conjecture sheds light on the number theory of elliptic curves, and how it provides a beautiful and startling connection between two very different objects arising from an elliptic curve, one based on calculus, the other on algebra.

Aha! Gotcha: Paradoxes to Puzzle & Delight (Tools for Transformation)


Martin Gardner - 1975
    A pocket book of riddles, full of fun and illustrations.

Modes of Thought


Alfred North Whitehead - 1938
    Six lectures delivered at Wellesley College, Massachusetts, & two at the University of ChicagoPrefaceImportance Expression UnderstandingPerspective Forms of process Civilized universeNature lifelessNature aliveThe aim of philosophyIndex

Philosophy of Logic


Willard Van Orman Quine - 1970
    V. Quine presents logic as the product of two factors, truth and grammar--but argues against the doctrine that the logical truths are true because of grammar or language. Rather, in presenting a general theory of grammar and discussing the boundaries and possible extensions of logic, Quine argues that logic is not a mere matter of words.

Dice World: Science and Life in a Random Universe


Brian Clegg - 2013
    Admittedly real life wasn’t like that. But only, they argued, because we didn’t have enough data to be certain.Then the cracks began to appear. It proved impossible to predict exactly how three planets orbiting each other would move. Meteorologists discovered that the weather was truly chaotic – so dependent on small variations that it could never be predicted for more than a few days out. And the final nail in the coffin was quantum theory, showing that everything in the universe has probability at its heart.That gives human beings a problem. We understand the world through patterns. Randomness and probability will always be alien to us. But it’s time to plunge into this fascinating, shadowy world, because randomness crops up everywhere. Probability and statistics are the only way to get a grip on nature’s workings. They may even seal the fate of free will and predict how the universe will end.Forget Newton’s clockwork universe. Welcome to Dice World.

Here's Looking at Euclid: A Surprising Excursion Through the Astonishing World of Math


Alex Bellos - 2010
    But, Alex Bellos says, "math can be inspiring and brilliantly creative. Mathematical thought is one of the great achievements of the human race, and arguably the foundation of all human progress. The world of mathematics is a remarkable place."Bellos has traveled all around the globe and has plunged into history to uncover fascinating stories of mathematical achievement, from the breakthroughs of Euclid, the greatest mathematician of all time, to the creations of the Zen master of origami, one of the hottest areas of mathematical work today. Taking us into the wilds of the Amazon, he tells the story of a tribe there who can count only to five and reports on the latest findings about the math instinct--including the revelation that ants can actually count how many steps they've taken. Journeying to the Bay of Bengal, he interviews a Hindu sage about the brilliant mathematical insights of the Buddha, while in Japan he visits the godfather of Sudoku and introduces the brainteasing delights of mathematical games.Exploring the mysteries of randomness, he explains why it is impossible for our iPods to truly randomly select songs. In probing the many intrigues of that most beloved of numbers, pi, he visits with two brothers so obsessed with the elusive number that they built a supercomputer in their Manhattan apartment to study it. Throughout, the journey is enhanced with a wealth of intriguing illustrations, such as of the clever puzzles known as tangrams and the crochet creation of an American math professor who suddenly realized one day that she could knit a representation of higher dimensional space that no one had been able to visualize. Whether writing about how algebra solved Swedish traffic problems, visiting the Mental Calculation World Cup to disclose the secrets of lightning calculation, or exploring the links between pineapples and beautiful teeth, Bellos is a wonderfully engaging guide who never fails to delight even as he edifies. "Here's Looking at Euclid "is a rare gem that brings the beauty of math to life.

Philosophical Devices: Proofs, Probabilities, Possibilities, and Sets


David Papineau - 2012
    Notions like denumerability, modal scope distinction, Bayesian conditionalization, and logical completeness are usually only elucidated deep within difficultspecialist texts. By offering simple explanations that by-pass much irrelevant and boring detail, Philosophical Devices is able to cover a wealth of material that is normally only available to specialists.The book contains four sections, each of three chapters. The first section is about sets and numbers, starting with the membership relation and ending with the generalized continuum hypothesis. The second is about analyticity, a prioricity, and necessity. The third is about probability, outliningthe difference between objective and subjective probability and exploring aspects of conditionalization and correlation. The fourth deals with metalogic, focusing on the contrast between syntax and semantics, and finishing with a sketch of Godel's theorem.Philosophical Devices will be useful for university students who have got past the foothills of philosophy and are starting to read more widely, but it does not assume any prior expertise. All the issues discussed are intrinsically interesting, and often downright fascinating. It can be read withpleasure and profit by anybody who is curious about the technical infrastructure of contemporary philosophy.

Love and Math: The Heart of Hidden Reality


Edward Frenkel - 2013
    In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man’s journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century’s leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat’s last theorem, that had seemed intractable before.At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.