The Story of Mathematics


Anne Rooney - 2008
    Topics include the development of counting and numbers systems, the emergence of zero, cultures that don’t have numbers, algebra, solid geometry, symmetry and beauty, perspective, riddles and problems, calculus, mathematical logic, friction force and displacement, subatomic particles, and the expansion of the universe. Great mathematical thinkers covered include Napier, Liu Hui, Aryabhata, Galileo, Newton, Russell, Einstein, Riemann, Euclid, Carl Friedrich Gauss, Charles Babbage, Montmort, Wittgenstein, and many more. The book is beautifully illustrated throughout in full color.

Essential Poker Math, Expanded Edition: Fundamental No Limit Hold'em Mathematics You Need To Know


Alton Hardin - 2016
    This book will teach you the basic poker mathematics you need to know in order to improve and outplay your opponents, and focuses on foundational poker mathematics - the ones you’ll use day in and day out at the poker table; and probably the ones your opponents neglect.

Calculus: An Intuitive and Physical Approach


Morris Kline - 1967
    In-depth explorations of the derivative, the differentiation and integration of the powers of x, and theorems on differentiation and antidifferentiation lead to a definition of the chain rule and examinations of trigonometric functions, logarithmic and exponential functions, techniques of integration, polar coordinates, much more. Clear-cut explanations, numerous drills, illustrative examples. 1967 edition. Solution guide available upon request.

Elementary Number Theory


David M. Burton - 1976
    It reveals the attraction that has drawn leading mathematicians and amateurs alike to number theory over the course of history.

The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds


Jeffrey R. Weeks - 1985
    Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.

Problems Plus In Iit Mathematics


A. Das Gupta
    This is type of problems asked at the JEE (IIT). The purpose of this book is to show students how to handle such problems and give them sufficient practice in solving problems of this type, thus building their confidence. The main features of this book are:Each chapter begins with a summary of facts, formulate and working techniques. Trick, tips and techniques have been clearly marked with the icon.A large number of problems have been solved and explained in each chapter.The exercises contain short-answer, long-answer and objective type questions.Multiple-choice questions in which more than one option may be correct have also been given.Time-bound tests at the end of each chapter will help students practise answering questions in a given time.The book also includes integrated tests, bases on all the chapters.A chapter containing miscellaneous problems has been given at the end of the book. This will help students gain confidence in solving problems without prior knowledge of the chapter(s) to which the problems belong.Table of ContentsAlgebraProgressions, Related Inequalities and SeriesDeterminants and Cramer's RuleEquations, Inequations and ExpressionsComplex NumbersPermutation and CombinationBinomial Theorem for Positive Integral IndexPrinciple of Mathematical Induction (PMI)Infinite SeriesMatricesTrigonometryCircular Functions, IdentitiesSolution of EquationsInverse Circular FunctionsTrigonometrical Inequalities and InequationsLogarithmProperties of TriangleHeights and DistancesCoordinate GeometryCoordinates and Straight LinesPairs of Straight Lines and Transformation of AxesCirclesParabolaEllipse and HyperbolaCalculusFunctionDifferentiationLimit, Indeterminate FormContinuity, Differentiability and Graph of FunctionApplication of dy/dxMaxima and MinimaMonotonic Function and Lagrange's TheoremIndefinite In

Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."

Mathematical Analysis


S.C. Malik - 1992
    This book discusses real sequences and series, continuity, functions of several variables, elementary and implicit functions, Riemann and Riemann-Stieltjes integrals, and Lebesgue integrals.

Geometry, Relativity and the Fourth Dimension


Rudolf Rucker - 1977
    A remarkable pictorial discussion of the curved space-time we call home, it achieves even greater impact through the use of 141 excellent illustrations. This is the first sustained visual account of many important topics in relativity theory that up till now have only been treated separately.Finding a perfect analogy in the situation of the geometrical characters in Flatland, Professor Rucker continues the adventures of the two-dimensional world visited by a three-dimensional being to explain our three-dimensional world in terms of the fourth dimension. Following this adventure into the fourth dimension, the author discusses non-Euclidean geometry, curved space, time as a higher dimension, special relativity, time travel, and the shape of space-time. The mathematics is sound throughout, but the casual reader may skip those few sections that seem too purely mathematical and still follow the line of argument. Readable and interesting in itself, the annotated bibliography is a valuable guide to further study.Professor Rucker teaches mathematics at the State University of New York in Geneseo. Students and laymen will find his discussion to be unusually stimulating. Experienced mathematicians and physicists will find a great deal of original material here and many unexpected novelties. Annotated bibliography. 44 problems.

Introduction to Graph Theory


Douglas B. West - 1995
    Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.

How to Think Like a Mathematician


Kevin Houston - 2009
    Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

Schaum's Outline of Mathematical Economics


Edward T. Dowling - 1992
    Students know that Schaum's delivers the goods—in faster learning curves,better test scores,and higher grades!If you don't have a lot of time but want to excel in class,this book helps you: Brush up before tests; Find answers fast; Study quickly and more effectively; Get the big picture without spending hours poring over dull texts Schaum's Outlines give you the information teachers expect you to know in a handy and succinct format—without overwhelming you with unnecessary details. You get a complete overview of the subject—and no distracting minutiae. Plus,you get plenty of practice exercises to test your skill. Compatible with any classroom text,Schaum's lets you study at your own pace and reminds you of all the important facts you need to remember—fast! And Schaum's is so complete it's the perfect tool for preparing for graduate or professional exams! Students of mathematical economics apply complex formulas—a challenging task that even the best students find daunting. But this Schaum's guide demystifies tough problems and gives you plenty of fully worked examples! Chapters include: Review. Economic Applications of Graphs and Equations. The Derivative and the Rules of Differentiation. Uses of the Derivative in Mathematics and Economics. Calculus of Multivariable Functions. Calculus of Multivariable Functions in Economics. Exponential and LogarithmicFunctions. Exponential and Logarithmic Functions in Economics. Differentiation of Exponential and Logarithmic Functions. The Fundamentals of Linear (or Matrix) Algebra. Matrix Inversion. Special Determinants and Matrices and Their Use in Economics. Linear Programming: A Graphic Approach. Linear Programming: The Simplex Algorithm. Linear Programming: The Dual. Integral Calculus: The Indefinite Integral. Integral Calculus: The Definite Integral. Differential Equations. Difference Equations. Second-Order Differential Equations and Difference Equations. The Calculus of Variations

A Concise History of Mathematics


Dirk Jan Struik - 1948
    Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.

Finite-Dimensional Vector Spaces


Paul R. Halmos - 1947
    The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all, this is an excellent work, of equally high value for both student and teacher." Zentralblatt f�r Mathematik