Book picks similar to
Problems in Mathematical Analysis by W.J. Kaczor
math
catalogue
math-anal
math-cal-anal
Metamagical Themas: Questing for the Essence of Mind and Pattern
Douglas R. Hofstadter - 1985
Hofstadter's collection of quirky essays is unified by its primary concern: to examine the way people perceive and think.
Learning to Love Math: Teaching Strategies That Change Student Attitudes and Get Results
Judy Willis - 2010
Judy Willis responds with an emphatic yes in this informative guide to getting better results in math class. Tapping into abundant research on how the brain works, Willis presents a practical approach for how we can improve academic results by demonstrating certain behaviors and teaching students in a way that minimizes negativity.With a straightforward and accessible style, Willis shares the knowledge and experience she has gained through her dual careers as a math teacher and a neurologist. In addition to learning basic brain anatomy and function, readers will learn how to* Improve deep-seated negative attitudes toward math.* Plan lessons with the goal of achievable challenge in mind.* Reduce mistake anxiety with techniques such as errorless math and estimation.* Teach to different individual learning strengths and skill levels.* Spark motivation.* Relate math to students' personal interests and goals.* Support students in setting short-term and long-term goals.* Convince students that they can change their intelligence.With dozens of strategies teachers can use right now, Learning to Love Math puts the power of research directly into the hands of educators. A Brain Owner's Manual, which dives deeper into the structure and function of the brain, is also included--providing a clear explanation of how memories are formed and how skills are learned. With informed teachers guiding them, students will discover that they can build a better brain . . . and learn to love math!
Abstract Algebra
I.N. Herstein - 1986
Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.
Numerical Methods for Scientists and Engineers
Richard Hamming - 1973
Book is unique in its emphasis on the frequency approach and its use in the solution of problems. Contents include: Fundamentals and Algorithms; Polynomial Approximation — Classical Theory; Fourier Approximation — Modern Theory; and Exponential Approximation.
The 125 Best Brain Teasers of All Time: A Mind-Blowing Challenge of Math, Logic, and Wordplay
Marcel Danesi - 2018
Collected here to keep your wits sharp, The Best Brain Teasers of All Time features the cleverest brain teasers from around the world and throughout history.The Best Brain Teasers of All Time gives you hours of fun-filled entertainment with brain teasers that develop your problem-solving skills in math, logic, and wordplay. Organized as an integrated challenge, these brain teasers build in momentum as they increase in difficulty from classic nursery rhymes to the riddle of the sphinx.The Best Brain Teasers of All Time puts your mind to the test with:
125 Brain Teasers that require no special skills to solve. Plus, each question comes with an optional clue in case you get stumped and a handy answer key in the back to test yourself or play with friends
Brain Teasers for Every Level that cater to beginners and advanced masterminds alike, with brain teasers organized by level of difficulty to improve your skills as you move forward
Hints of History that provide fun facts and background information for every brain teaser
Get ready to sharpen your wit with every “aha” moment. The Best Brain Teasers of All Time is a go-to source for timeless fun and mind-blowing challenges.
CliffsNotes Math Review for Standardized Tests
Jerry Bobrow - 2010
Your guide to a higher math score on standardized tests*SATACT(R)ASVABGMAT(R)GRE(R)CBEST(R)PRAXIS I(R)GED(R) And More!Why CliffsNotes?Go with the name you know and trustGet the information you need-fast!About the Contents:IntroductionHow to use this bookOverview of the examsPart I: Basic Skills ReviewArithmetic and Data AnalysisAlgebraPart II: Strategies and PracticeMathematical AbilityQuantitative ComparisonData SufficiencyEach section includes a diagnostic test, explanations of rules, concepts withexamples, practice problems with complete explanations, a review test, and aglossary!Test-Prep Essentials from the Experts at CliffsNotes(R)For more test-prep help, visit CliffsNotes.com(R)*SAT is a registered trademark of the College Board, which was not involved inthe production of, and does not endorse, this product.
A Concise History of Mathematics
Dirk Jan Struik - 1948
Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.
Symbolic Logic And The Game Of Logic
Lewis Carroll - 1958
Written by the 19th-century mathematician who also gave us "Alive in Wonderland", they are among the most entertaining logical works ever written, and contain some of the most thought-provoking puzzles ever devised.
Introductory Graph Theory
Gary Chartrand - 1984
Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics — profusely illustrated — include: Mathematical Models, Elementary Concepts of Graph Theory, Transportation Problems, Connection Problems, Party Problems, Digraphs and Mathematical Models, Games and Puzzles, Graphs and Social Psychology, Planar Graphs and Coloring Problems, and Graphs and Other Mathematics. A useful Appendix covers Sets, Relations, Functions, and Proofs, and a section devoted to exercises — with answers, hints, and solutions — is especially valuable to anyone encountering graph theory for the first time. Undergraduate mathematics students at every level, puzzlists, and mathematical hobbyists will find well-organized coverage of the fundamentals of graph theory in this highly readable and thoroughly enjoyable book.
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
The Manga Guide to Relativity
Hideo Nitta - 2010
When the headmaster forces Minagi's entire class to study Einstein's theory of relativity over summer school, Minagi volunteers to go in their place. There's just one problem: He's never even heard of relativity before! Luckily, Minagi has the plucky Miss Uraga to teach him.
Follow along with The Manga Guide to Relativity as Minagi learns about the non-intuitive laws that shape our universe. Before you know it, you'll master difficult concepts like inertial frames of reference, unified spacetime, and the equivalence principle. You'll see how relativity affects modern astronomy and discover why GPS systems and other everyday technologies depend on Einstein's extraordinary discovery.
The Manga Guide to Relativity also teaches you how to:
Understand and use E = mc2, the world's most famous equation
Calculate the effects of time dilation using the Pythagorean theorem
Understand classic thought experiments like the Twin Paradox, and see why length contracts and mass increases at relativistic speeds
Grasp the underpinnings of Einstein's special and general theories of relativity
If the idea of bending space and time really warps your brain, let The Manga Guide to Relativity straighten things out.
Mathematical Analysis
S.C. Malik - 1992
This book discusses real sequences and series, continuity, functions of several variables, elementary and implicit functions, Riemann and Riemann-Stieltjes integrals, and Lebesgue integrals.
How the Brain Learns Mathematics
David A. Sousa - 2007
Sousa discusses the cognitive mechanisms for learning mathematics and the environmental and developmental factors that contribute to mathematics difficulties. This award-winning text examines:Children's innate number sense and how the brain develops an understanding of number relationships Rationales for modifying lessons to meet the developmental learning stages of young children, preadolescents, and adolescents How to plan lessons in PreK-12 mathematics Implications of current research for planning mathematics lessons, including discoveries about memory systems and lesson timing Methods to help elementary and secondary school teachers detect mathematics difficulties Clear connections to the NCTM standards and curriculum focal points
Partial Differential Equations for Scientists and Engineers
Stanley J. Farlow - 1982
Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.