The Ultimate Fate Of The Universe


Jamal Nazrul Islam - 1983
    To understand the universe in the far future, we must first describe its present state and structure on the grand scale, and how its present properties arose. Dr Islam explains these topics in an accessible way in the first part of the book. From this background he speculates about the future evolution of the universe and predicts the major changes that will occur. The author has largely avoided mathematical formalism and therefore the book is well suited to general readers with a modest background knowledge of physics and astronomy.

Elementary Solid State Physics: Principles and Applications


M. Ali Omar - 1975
    I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.

The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics


Paul C.W. Davies - 1986
    Niels Bohr's dictum bears witness to the bewildering impact of quantum theory, flying in the face of classical physics and dramatically transforming scientists' outlook on our relationship with the material world. In this book Paul Davies interviews eight physicists involved in debating and testing the theory, with radically different views of its significance.

Mathematics: The Loss of Certainty


Morris Kline - 1980
    Mathematics: The Loss of Certainty refutes that myth.

Introduction to Superstrings and M-Theory


Michio Kaku - 1989
    Called by some, "the theory of everything," superstrings may solve a problem that has eluded physicists for the past 50 years, the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. Now, here is a thoroughly revised, second edition of a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentations, including: - Four-dimensional superstrings - Kac-Moody algebras - Teichm�ller spaces and Calabi-Yau manifolds - M-theory Membranes and D-branes - Duality and BPS relations - Matrix models The book begins with a simple discussion of point particle theory, and uses Feynman path integrals to unify the presentation of superstrings. It has been updated throughout, and three new chapters on M-theory have been added. Prerequisites are an acquaintance with quantum mechanics and relativity.

Engineering Thermodynamics: A Computer Approach (Si Units Version) (Revised)


R.K. Rajput - 2009
    Pure Substances, The First And Second Laws, Gases, Psychrometrics, The Vapor, Gas And Refrigeration Cycles, Heat Transfer, Compressible Flow, Chemical Reactions, Fuels, And More Are Presented In Detail And Enhanced With Practical Applications. This Version Presents The Material Using SI Units And Has Ample Material On SI Conversion, Steam Tables, And A Mollier Diagram. A CD-ROM, Included With The Print Version Of The Text, Includes A Fully Functional Version Of Quickfield (Widely Used In Industry), As Well As Numerous Demonstrations And Simulations With MATLAB, And Other Third Party Software.

Speakable and Unspeakable in Quantum Mechanics


John Stewart Bell - 1987
    This work has played a major role in the development of our current understanding of the profound nature of quantum concepts and of the fundamental limitations they impose on the applicability of the classical ideas of space, time and locality. This book contains all of John Bell's published and unpublished papers on the conceptual and philosophical problems of quantum mechanics.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

Do You QuantumThink?: New Thinking That Will Rock Your World


Dianne Collins - 2011
    We're all looking for new ways of thinking that can bring about real solutions to modern problems, from the pursuit of inner serenity to solving world conflicts. In Do You QuantumThink? author Dianne Collins shares her ingenious discovery that reveals a critical missing link to make sense of our changing times. Her discovery provides us with the understanding and methodology to rise above problems of today by laying the foundation for an entirely new way to think.Part science, part philosophy, part spirituality, Do You QuantumThink? draws on a wide spectrum of sources, from cutting edge innovations in the sciences to the insights of the world's greatest spiritual leaders. This book will make you laugh, free you from limiting ideas, and introduce you to the most advanced principles and practical methods for living. Do You QuantumThink? will rock your world in the best of ways as you experience one revelation after another.

In Praise of Mathematics


Alain Badiou - 2015
    Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.

Quantum Electrodynamics


Richard P. Feynman - 1962
    Designed for the student of experimental physics who does not intend to take more advanced graduate courses in theoretical physics, the material consists of notes on the third of a three-semester course given at the California Institute of Technology.

Hidden In Plain Sight 9: The Physics Of Consciousness


Andrew H. Thomas - 2018
    Can a computer think? Why is your consciousness like Bitcoin? Will there be an artificial intelligence apocalypse?

Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law


Peter Woit - 2006
    In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.

Math Hysteria: Fun and Games with Mathematics


Ian Stewart - 2004
    Ian Stewart presents us with a wealth of magical puzzles, each one spun around an amazing tale, including Counting the Cattle of the Sun, The Great Drain Robbery, and Preposterous Piratical Predicaments. Fully illustrated with explanatory diagrams, each tale is told with engaging wit, sure to amuse everyone with an interest in puzzles and mathematics. Along the way, we also meet many curious characters. Containing twenty specially-commissioned cartoons, this book will delight all who are familiar with Stewart's many other books, such as What Shape is a Snowflake? and Flatterland and anyone interested in mathematical problems. In short, these stories are engaging, challenging, and lots of fun!

Time's Arrow and Archimedes' Point: New Directions for the Physics of Time


Huw Price - 1996
    Price begins with the mystery of the arrow of time. Why, for example, does disorder always increase, as required by the second law of thermodynamics? Price shows that, for over a century, most physicists have thought about these problems the wrong way. Misled by the human perspective from withintime, which distorts and exaggerates the differences between past and future, they have fallen victim to what Price calls the double standard fallacy: proposed explanations of the difference between the past and the future turn out to rely on a difference which has been slipped in at thebeginning, when the physicists themselves treat the past and future in different ways. To avoid this fallacy, Price argues, we need to overcome our natural tendency to think about the past and the future differently. We need to imagine a point outside time -- an Archimedean view from nowhen --from which to observe time in an unbiased way. Offering a lively criticism of many major modern physicists, including Richard Feynman and Stephen Hawking, Price shows that this fallacy remains common in physics today -- for example, when contemporary cosmologists theorize about the eventual fate of the universe. The big bang theory normallyassumes that the beginning and end of the universe will be very different. But if we are to avoid the double standard fallacy, we need to consider time symmetrically, and take seriously the possibility that the arrow of time may reverse when the universe recollapses into a big crunch. Price then turns to the greatest mystery of modern physics, the meaning of quantum theory. He argues that in missing the Archimedean viewpoint, modern physics has missed a radical and attractive solution to many of the apparent paradoxes of quantum physics. Many consequences of quantum theoryappear counterintuitive, such as Schrodinger's Cat, whose condition seems undetermined until observed, and Bell's Theorem, which suggests a spooky nonlocality, where events happening simultaneously in different places seem to affect each other directly. Price shows that these paradoxes can beavoided by allowing that at the quantum level the future does, indeed, affect the past. This demystifies nonlocality, and supports Einstein's unpopular intuition that quantum theory describes an objective world, existing independently of human observers: the Cat is alive or dead, even when nobodylooks. So interpreted, Price argues, quantum mechanics is simply the kind of theory we ought to have expected in microphysics -- from the symmetric standpoint.Time's Arrow and Archimedes' Point presents an innovative and controversial view of time and contemporary physics. In this exciting book, Price urges physicists, philosophers, and anyone who has ever pondered the mysteries of time to look at the world from the fresh perspective of Archimedes' Pointand gain a deeper understanding of ourselves, the universe around us, and our own place in time.