50 Physics Ideas You Really Need to Know


Joanne Baker - 2007
    She explains ideas at the cutting-edge of scientific enquiry, making them comprehensible and accessible to the layperson.

Radioactive: Marie and Pierre Curie, A Tale of Love and Fallout


Lauren Redniss - 2010
    A brilliant visual storyteller, Redniss has hand-designed more than 100 color collages to tell Curie’s story, fascinating in its scientific significance and its sometimes whimsical, sometimes haunting mix of romance and intrigue. Bringing together archival photos, images, and clippings with dazzling line drawings and a compelling narrative, Radioactive is far more than just an art book or a graphic novel: It is a stunning visual biography and a true work of art.

The Amazing Story of Quantum Mechanics: A Math-Free Exploration of the Science that Made Our World


James Kakalios - 2010
    Using illustrations and examples from science fiction pulp magazines and comic books, The Amazing Story of Quantum Mechanics explains the fundamental principles of quantum mechanics that underlie the world we live in.Watch a Video

A Really Short History of Nearly Everything (Young Adult)


Bill Bryson - 2003
    It had an illustration that captivated him–a diagram showing Earth’s interior as it would look if you cut into it with a large knife and removed about a quarter of its bulk. The idea of lots of startled cars and people falling off the edge of that sudden cliff (and 4,000 miles is a pretty long way to fall) was what grabbed him in the beginning, but gradually his attention turned to what the picture was trying to teach him: namely that Earth’s interior is made up of several different layers of materials, and at the very centre is a glowing sphere of iron and nickel, as hot as the Sun’s surface, according to the caption. And he very clearly remembers thinking: “How do they know that?”Bill’s storytelling skill makes the “How?” and, just as importantly, the “Who?” of scientific discovery entertaining and accessible for all ages. He covers the wonder and mystery of time and space, the frequently bizarre and often obsessive scientists and the methods they used, and the mind-boggling fact that, somehow, the universe exists and against all odds, life came to be on this wondrous planet we call home.

What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics


Adam Becker - 2018
    But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.

The Lives of a Cell: Notes of a Biology Watcher


Lewis Thomas - 1978
    

The Principia: Mathematical Principles of Natural Philosophy


Isaac Newton - 1687
    Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles.This completely new translation, the first in 270 years, is based on the third (1726) edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms. Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.The illuminating Guide to the Principia by I. Bernard Cohen, along with his and Anne Whitman's translation, will make this preeminent work truly accessible for today's scientists, scholars, and students.

Microbe Hunters


Paul de Kruif - 1926
    Gonzalez-Crussi, from the Introduction An international bestseller, translated into eighteen languages, Paul de Kruif’s classic account of the first scientists to see and learn about the microscopic world continues to fascinate new readers. This is a timeless dramatization of the scientists, bacteriologists, doctors, and medical technicians who discovered the microbes and invented the vaccines to counter them. De Kruif writes about how seemingly simple but really fundamental discovers of science—for instance, how a microbe was first viewed in a clear drop of rain water, and when, for the first time, Louis Pasteur discovered that a simple vaccine could save a man from the ravages of rabies by attacking the microbes that cause it.

The Vital Question: Energy, Evolution, and the Origins of Complex Life


Nick Lane - 2015
    Yet there’s a black hole at the heart of biology. We do not know why complex life is the way it is, or, for that matter, how life first began. In The Vital Question, award-winning author and biochemist Nick Lane radically reframes evolutionary history, putting forward a solution to conundrums that have puzzled generations of scientists.For two and a half billion years, from the very origins of life, single-celled organisms such as bacteria evolved without changing their basic form. Then, on just one occasion in four billion years, they made the jump to complexity. All complex life, from mushrooms to man, shares puzzling features, such as sex, which are unknown in bacteria. How and why did this radical transformation happen?The answer, Lane argues, lies in energy: all life on Earth lives off a voltage with the strength of a lightning bolt. Building on the pillars of evolutionary theory, Lane’s hypothesis draws on cutting-edge research into the link between energy and cell biology, in order to deliver a compelling account of evolution from the very origins of life to the emergence of multicellular organisms, while offering deep insights into our own lives and deaths.Both rigorous and enchanting, The Vital Question provides a solution to life’s vital question: why are we as we are, and indeed, why are we here at all?

The Structure of Scientific Revolutions


Thomas S. Kuhn - 1962
    The Structure of Scientific Revolutions is that kind of book. When it was first published in 1962, it was a landmark event in the history and philosophy of science. Fifty years later, it still has many lessons to teach. With The Structure of Scientific Revolutions, Kuhn challenged long-standing linear notions of scientific progress, arguing that transformative ideas don’t arise from the day-to-day, gradual process of experimentation and data accumulation but that the revolutions in science, those breakthrough moments that disrupt accepted thinking and offer unanticipated ideas, occur outside of “normal science,” as he called it. Though Kuhn was writing when physics ruled the sciences, his ideas on how scientific revolutions bring order to the anomalies that amass over time in research experiments are still instructive in our biotech age. This new edition of Kuhn’s essential work in the history of science includes an insightful introduction by Ian Hacking, which clarifies terms popularized by Kuhn, including paradigm and incommensurability, and applies Kuhn’s ideas to the science of today. Usefully keyed to the separate sections of the book, Hacking’s introduction provides important background information as well as a contemporary context.  Newly designed, with an expanded index, this edition will be eagerly welcomed by the next generation of readers seeking to understand the history of our perspectives on science.

The Making of the Atomic Bomb


Richard Rhodes - 1986
    From the theoretical discussions of nuclear energy to the bright glare of Trinity there was a span of hardly more than twenty-five years. What began as merely an interesting speculative problem in physics grew into the Manhattan Project, and then into the Bomb with frightening rapidity, while scientists known only to their peers -- Szilard, Teller, Oppenheimer, Bohr, Meitner, Fermi, Lawrence, and yon Neumann -- stepped from their ivory towers into the limelight.Richard Rhodes takes us on that journey step by step, minute by minute, and gives us the definitive story of man's most awesome discovery and invention.

The Trouble with Physics: The Rise of String Theory, the Fall of a Science and What Comes Next


Lee Smolin - 2006
    For more than two centuries, our understanding of the laws of nature expanded rapidly. But today, despite our best efforts, we know nothing more about these laws than we knew in the 1970s. Why is physics suddenly in trouble? And what can we do about it?One of the major problems, according to Smolin, is string theory: an ambitious attempt to formulate a “theory of everything” that explains all the particles and forces of nature and how the universe came to be. With its exotic new particles and parallel universes, string theory has captured the public’s imagination and seduced many physicists.But as Smolin reveals, there’s a deep flaw in the theory: no part of it has been tested, and no one knows how to test it. In fact, the theory appears to come in an infinite number of versions, meaning that no experiment will ever be able to prove it false. As a scientific theory, it fails. And because it has soaked up the lion’s share of funding, attracted some of the best minds, and effectively penalized young physicists for pursuing other avenues, it is dragging the rest of physics down with it.With clarity, passion, and authority, Smolin charts the rise and fall of string theory and takes a fascinating look at what will replace it. A group of young theorists has begun to develop exciting ideas that, unlike string theory, are testable. Smolin not only tells us who and what to watch for in the coming years, he offers novel solutions for seeking out and nurturing the best new talent—giving us a chance, at long last, of finding the next Einstein.

The Where, the Why, and the How: 75 Artists Illustrate Wondrous Mysteries of Science


Matt LaMothe - 2012
    Inside these pages some of the biggest (and smallest) mysteries of the natural world are explained in essays by real working scientists, which are then illustrated by artists given free rein to be as literal or as imaginative as they like. The result is a celebration of the wonder that inspires every new discovery. Featuring work by such contemporary luminaries as Lisa Congdon, Jen Corace, Neil Farber, Susie Ghahremani, Jeremyville, and many more, this is a work of scientific and artistic exploration to pique the interest of both the intellectually and imaginatively curious.

Free Radicals: The Secret Anarchy of Science


Michael Brooks - 2011
    [4] of cover.

Storm in a Teacup: The Physics of Everyday Life


Helen Czerski - 2017
    Czerski provides the tools to alter the way we see everything around us by linking ordinary objects and occurrences, like popcorn popping, coffee stains, and fridge magnets, to big ideas like climate change, the energy crisis, or innovative medical testing. She provides answers to vexing questions: How do ducks keep their feet warm when walking on ice? Why does it take so long for ketchup to come out of a bottle? Why does milk, when added to tea, look like billowing storm clouds? In an engaging voice at once warm and witty, Czerski shares her stunning breadth of knowledge to lift the veil of familiarity from the ordinary.