How It Began: A Time-Traveler's Guide to the Universe


Chris Impey - 2012
    Because it takes time for light to travel, we see more and more distant regions of the universe as they were in the successively greater past. Impey uses this concept—"look-back time"—to take us on an intergalactic tour that is simultaneously out in space and back in time. Performing a type of cosmic archaeology, Impey brilliantly describes the astronomical clues that scientists have used to solve fascinating mysteries about the origins and development of our universe.The milestones on this journey range from the nearby to the remote: we travel from the Moon, Jupiter, and the black hole at the heart of our galaxy all the way to the first star, the first ray of light, and even the strange, roiling conditions of the infant universe, an intense and volatile environment in which matter was created from pure energy. Impey gives us breathtaking visual descriptions and also explains what each landmark can reveal about the universe and its history. His lucid, wonderfully engaging scientific discussions bring us to the brink of modern cosmology and physics, illuminating such mind-bending concepts as invisible dimensions, timelessness, and multiple universes.A dynamic and unforgettable portrait of the cosmos, How It Began will reward its readers with a deeper understanding of the universe we inhabit as well as a renewed sense of wonder at its beauty and mystery.

Einstein For Dummies


Carlos I. Calle - 2005
    He went on to become a twentieth-century icon-a man whose name and face are synonymous with "genius." Now, at last, ordinary readers can explore Einstein's life and work in this new For Dummies guide. Physicist Carlos Calle chronicles Einstein's career and explains his work-including the theories of special and general relativity-in language that anyone can understand. He shows how Einstein's discoveries affected everything from the development of the atom bomb to the theory of quantum mechanics. He sheds light on Einstein's personal life and beliefs, including his views on religion and politics. And he shows how Einstein's work continues to affect our world today, from nuclear power to space travel to artificial intelligence.

Electrical Machines (AC & DC Machines)


J.B. Gupta
    Table of Contents Unit-I: Transformers Transformers Unit-II: DC Machines DC Generators Operating Characteristics and Applications of DC Motors Speed Control Starting and Braking of DC Motors Unit-III: Three Phase Induction Motors Construction, Theory and Operation of Three-phase Induction Motors Starting, Speed Control and Braking of 3-phase Induction Motors Unit-IV: Three-Phase Synchronous Machines Synchronous Generators Synchronous Motors Unit-V: Functional Horse Power Motors and Industrial Application Functional Horse Power Motors Industrial Applications Model Test Papers Question Papers with Solutions Index

Introducing Time


Craig Callender - 1997
    Traces the history of time from Augustine's suggestion that there is no time, to the flowing time of Newton, the static time of Einstein, and then back, to the idea that there is no time in quantum gravity.

Schaum's Outline of Advanced Mathematics for Engineers and Scientists


Murray R. Spiegel - 1971
    Fully stocked with solved problemsN950 of themNit shows you how to solve problems that may not have been fully explained in class. Plus you ge"

Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think


David Lindley - 1996
    Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.

Red Giants and White Dwarfs


Robert Jastrow - 1967
    "A masterpiece of science."—Werner von Braun.

Powering the Future


Robert B. Laughlin - 2011
    Laughlin transports us two centuries into the future, when we've ceased to use carbon from the ground--either because humans have banned carbon burning or because fuel has simply run out. Boldly, Laughlin predicts no earth-shattering transformations will have taken place. Six generations from now, there will still be soccer moms, shopping malls, and business trips. Firesides will still be snug and warm.How will we do it? Not by discovering a magic bullet to slay our energy problems, but through a slew of fascinating technologies, drawing on wind, water, and fire. Powering the Future is an objective yet optimistic tour through alternative fuel sources, set in a world where we've burned every last drop of petroleum and every last shovelful of coal.The Predictable: Fossil fuels will run out. The present flow of crude oil out of the ground equals in one day the average flow of the Mississippi River past New Orleans in thirteen minutes. If you add the energy equivalents of gas and coal, it's thirty-six minutes. At the present rate of consumption, we'll be out of fossil fuels in two centuries' time. We always choose the cheapest gas. From the nineteenth-century consolidation of the oil business to the California energy crisis of 2000-2001, the energy business has shown, time and again, how low prices dominate market share. Market forces--not green technology--will be the driver of energy innovation in the next 200 years. The laws of physics remain fixed. Energy will still be conserved, degrade entropically with use, and have to be disposed of as waste heat into outer space. How much energy a fuel can pack away in a given space is fixed by quantum mechanics--and if we want to keep flying jet planes, we will need carbon-based fuels. The Potential: Animal waste. If dried and burned, the world's agricultural manure would supply about one-third as much energy as all the coal we presently consume. Trash. The United States disposes of 88 million tons of carbon in its trash per year. While the incineration of waste trash is not enough to contribute meaningfully to the global demand for energy, it will constrain fuel prices by providing a cheap supply of carbon. Solar energy. The power used to light all the cities around the world is only one-millionth of the total power of sunlight pouring down on earth's daytime side. And the amount of hydropump storage required to store the world's daily electrical surge is equal to only eight times the volume of Lake Mead. PRAISE FOR ROBERT B. LAUGHLIN -Perhaps the most brilliant theoretical physicist since Richard Feynman---George Chapline, Lawrence Livermore National Laboratory -Powerful but controversial.--- Financial Times -[Laughlin's] company ... is inspirational.- --New Scientist

The Hole in the Universe


K.C. Cole - 2001
    C. Cole. Once again, acclaimed science writer K. C. Cole brings the arcane and academic down to the level of armchair scientists in The Hole in the Universe, an entertaining and edifying search for nothing at all. Open the newspaper on any given day and you will read of a newly discovered planet, star, and so on. Yet scientists and mathematicians have spent generations searching the far reaches of the universe for that one elusive state—nothingness. Although this may sound like a simple task, every time the absolute void appears within reach, something new is discovered in its place: a black hole, an undulating string, an additional dimension of space or time—even another universe. A fascinating and literary tour de force, The Hole in the Universe is a virtual romp into the unknown that you never knew wasn't there.

Edge of the Universe A Voyage to the Cosmic Horizon and Beyond


Paul Halpern - 2012
    Yet recent theories suggest that there is far more to the universe than what our instruments record--in fact, it could be infinite. Colossal flows of galaxies, large empty regions called voids, and other unexplained phenomena offer clues that our own "bubble universe" could be part of a greater realm called the multiverse. How big is the observable universe? What it is made of? What lies beyond it? Was there a time before the Big Bang? Could space have unseen dimensions? In this book, physicist and science writer Paul Halpern explains what we know--and what we hope to soon find out--about our extraordinary cosmos.Explains what we know about the Big Bang, the accelerating universe, dark energy, dark flow, and dark matter to examine some of the theories about the content of the universe and why its edge is getting farther away from us fasterExplores the idea that the observable universe could be a hologram and that everything that happens within it might be written on its edgeWritten by physicist and popular science writer Paul Halpern, whose other books include "Collider: The Search for the World's Smallest Particles," and "What's Science Ever Done For Us: What the Simpsons Can Teach Us About Physics, Robots, Life, and the Universe"

My Favorite Universe


Neil deGrasse Tyson - 2003
    Clear Science Teaching to Set the Stage for an Awe-Inspiring Course Created for a lay audience and readily accessible, in this course science always takes precedence over drama. The lectures are certainly entertaining, often funny, even awe-inspiring at times, as befits the subject matter. Even though you will be entertained, you will be learning good science. Clear introductions to essential principles of physics support these lectures, including density, quantum theory, gravity, and the General Theory of Relativity. Professor Neil deGrasse Tyson also includes forays into disciplines such as chemistry and biology as needed to explain events in astronomy. For example, Dr. Tyson begins one lecture at a point 13 billion years ago, when all space, matter, and energy in the known universe were contained in a volume less than one-trillionth the size of a pinpoint-about the size of a single atom. By the time he finishes, the cosmos has been stretched, the planets and our Earth formed, and 70 percent of existing Earth species have been wiped out by a gigantic asteroidclearing the way for the evolution of humanity. Along the way he has touched on Einstein's famous equation, E=mc2; on the four forces that were once unified in the early cosmos in a way physicists are still trying to explain; and on the chemical enrichment of the universe by exploding supernovae, which give the universe its necessary supply of heavier elements including oxygen, nitrogen, iron and, most important, carbon. Carbon, we learn, is a "sticky" atom, capable of making more kinds of molecules than all other elements combined. It's the ideal element with which to experiment in the building of life forms and is, of course, the element responsible for the remarkable diversity of life, including us. As Dr. Tyson notes, we are made of stardust, just as the planets are. And he has created a course that explains exactly how that came to be, beginning with a grounding in the basic "machinery" of matter, forces, and energy that has been discovered on Earth and which also reveals itself throughout the universe. The Stark and Violent Beauty of the Universe With this basic foundation in place, explanations of cosmic events fall logically into place, and the realities of the universe-including its eventual demise-are revealed in stark and often violent beauty. You learn: how Saturn's rings were formed, and why they will eventually be lost why low-density conditions are necessary to produce the drama of the northern and southern auroras why even the most jagged and wild of the Earth's mountain ranges are, from a cosmic standpoint, really part of a perfectly smooth sphere how black holes are formed and the extraordinary way in which they can wreak havoc in the universe how asteroids moving through space represent threats of extraordinary consequence to Earth, no matter how long those threats may take to be realized why the seemingly infinite panorama of celestial bodies revealed by the Hubble Space Telescope's famous "Deep Field" so intrigued astronomers how astronomers actually look for new planets, why the odds seem overwhelmingly in favor of some kind of life out there, whether we ever make contact or not. Most important, none of these ideas are presented as isolated "space factoids" that serve no purpose but to entertain. They are there to illustrate and reinforce the key principles of physics and astrophysics that are continually being presented in this course. But the inclusion of real science doesn't prevent Dr. Tyson from having some fun, either. When it's time to show how a black hole might remove one from the universe, he leads you right up to the "event horizon" and slips you in-feet first. Since the event horizon represents the point within which nothing, not even light, can escape, you might think this is a bad idea. And you would be right. But as you plummet toward the "singularity" at the heart of the black hole, you will learn firsthand about the interesting effects of gravity truly unleashed, including what physicists refer to, with a straight face, as "spaghettification." (Actually, Professor Tyson recommends that you be sucked in to a large black hole rather than a small one. You'll still be spaghettified, but it won't happen as quickly.) But make no mistake: Dr. Tyson does not consider the cosmos a laughing matter, this kind of whimsical touch notwithstanding. In spite of his training, he remains, admittedly, still in awe of his subject. And he has created a course that might well produce the same feeling in you.

Starlight Detectives: How Astronomers, Inventors, and Eccentrics Discovered the Modern Universe


Alan W. Hirshfeld - 2014
    . . . Readers will never again look into the night sky the same way.” —MICHAEL SHERMER, author of The Believing Brain on Parallax: The Race to Measure the CosmosIn 1930, Edwin Hubble announced the greatest discovery in the history of astronomy since Galileo first turned a telescope to the heavens. The galaxies, previously believed to float serenely in the void, are in fact hurtling apart at an incredible speed; the universe is expanding. This stunning discovery was the culmination of a decades-long arc of scientific and technical advancement. In its shadow lies an untold, yet equally fascinating, backstory whose cast of characters illuminates the gritty, hard-won nature of scientific progress.The path to a broader mode of cosmic observation was blazed by a cadre of 19th-century amateur astronomers and inventors, galvanized by the advent of photography, spectral analysis, and innovative technology to create the entirely new field of astrophysics. From William Bond, who turned his home into a functional observatory, to John and Henry Draper, a father and son team who were trailblazers of astrophotography and spectroscopy, to geniuses of invention such as Léon Foucault, and George Hale, who founded the Mount Wilson Observatory, Hirshfeld reveals the incredible stories—and the ambitious dreamers—behind the birth of modern astronomy.Alan Hirshfeld, Professor of Physics at the University of Massachusetts Dartmouth and an Associate of the Harvard College Observatory, is the author of Parallax: The Race to Measure the Cosmos, The Electric Life of Michael Faraday, and Eureka Man: The Life and Legacy of Archimedes.

A Nefarious Carol


Steve Deace - 2020
    Confident America has been conquered, Satan prepares to initiate the final stage of his master plan, but it requires a willing partner—will she say yes?Convinced his demon general Lord Nefarious has successfully conquered America, Satan himself now decides it’s time for him to step out of the shadows and complete his master plan. But for it to succeed, he must find a willing partner… On the run, frightened, and alone, Rae is cornered one fateful night in a rundown motel room by the devil himself. He has a once-in-eternity offer for her—the chance to change the world forever. But to convince her to freely accept it, Satan needs to connect with Rae’s past, present, and future to prove to her he can be trusted after all. A showdown for the ages is officially on, and humanity hangs in the balance.

Genesis: The Story of How Everything Began


Guido Tonelli - 2020
    From Hesiod's Chaos, described in his poem about the origins of the Greek gods, Theogony, to today's mind-bending theories of the multiverse, humans have been consumed by the relentless pursuit of an answer to one awe inspiring question: What exactly happened during those first moments?Guido Tonelli, the acclaimed, award-winning particle physicist and a central figure in the discovery of the Higgs boson (the "God particle"), reveals the extraordinary story of our genesis--from the origins of the universe, to the emergence of life on Earth, to the birth of human language with its power to describe the world. Evoking the seven days of biblical creation, Tonelli takes us on a brisk, lively tour through the evolution of our cosmos and considers the incredible challenges scientists face in exploring its mysteries. Genesis both explains the fundamental physics of our universe and marvels at the profound wonder of our existence.

Communication Electronics


Louis E. Frenzel - 1989
    In addition, it discusses antennas and microwave techniques at a technician level and covers data communication techniques (modems, local area networks, fiber optics, satellite communication) and advanced applications (cellular telephones, facsimile and radar). The work is suitable for courses in Communications Technology.