The New York Times Book of Mathematics: More Than 100 Years of Writing by the Numbers


Gina Kolata - 2013
    Big and informative, "The New York Times Book of Mathematics" gathers more than 110 articles written from 1892 to 2010 that cover statistics, coincidences, chaos theory, famous problems, cryptography, computers, and many other topics. Edited by Pulitzer Prize finalist and senior "Times" writer Gina Kolata, and featuring renowned contributors such as James Gleick, William L. Laurence, Malcolm W. Browne, George Johnson, and John Markoff, it's a must-have for any math and science enthusiast!

Edge of the Universe A Voyage to the Cosmic Horizon and Beyond


Paul Halpern - 2012
    Yet recent theories suggest that there is far more to the universe than what our instruments record--in fact, it could be infinite. Colossal flows of galaxies, large empty regions called voids, and other unexplained phenomena offer clues that our own "bubble universe" could be part of a greater realm called the multiverse. How big is the observable universe? What it is made of? What lies beyond it? Was there a time before the Big Bang? Could space have unseen dimensions? In this book, physicist and science writer Paul Halpern explains what we know--and what we hope to soon find out--about our extraordinary cosmos.Explains what we know about the Big Bang, the accelerating universe, dark energy, dark flow, and dark matter to examine some of the theories about the content of the universe and why its edge is getting farther away from us fasterExplores the idea that the observable universe could be a hologram and that everything that happens within it might be written on its edgeWritten by physicist and popular science writer Paul Halpern, whose other books include "Collider: The Search for the World's Smallest Particles," and "What's Science Ever Done For Us: What the Simpsons Can Teach Us About Physics, Robots, Life, and the Universe"

What is Nationalism?


Romila Thapar - 2016
    

The Self-Aware Universe: How Consciousness Creates the Material World


Amit Goswami - 1993
    He holds that the universe is self-aware, and that consciousness creates the physical world.

The Hole in the Universe


K.C. Cole - 2001
    C. Cole. Once again, acclaimed science writer K. C. Cole brings the arcane and academic down to the level of armchair scientists in The Hole in the Universe, an entertaining and edifying search for nothing at all. Open the newspaper on any given day and you will read of a newly discovered planet, star, and so on. Yet scientists and mathematicians have spent generations searching the far reaches of the universe for that one elusive state—nothingness. Although this may sound like a simple task, every time the absolute void appears within reach, something new is discovered in its place: a black hole, an undulating string, an additional dimension of space or time—even another universe. A fascinating and literary tour de force, The Hole in the Universe is a virtual romp into the unknown that you never knew wasn't there.

Lectures on the Foundations of Mathematics, Cambridge 1939


Ludwig Wittgenstein - 1989
    A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.

The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser


Jason Rosenhouse - 2009
    Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.

The Purpose-Guided Universe: Believing in Einstein, Darwin, and God


Bernard Haisch - 2010
    Bernard Haisch contends that there is a purpose and an underlying intelligence behind the Universe, one that is consistent with modern science, especially the Big Bang and evolution. It is based on recent discoveries that there are numerous coincidences and fine-tunings of the laws of nature that seem extraordinarily unlikely.A more rational concept of God is called for. As astrophysicist Sir James Jeans wrote, "the Universe begins to look more like a great thought than like a great machine."Despite bestsellers by Christopher Hitchens, Richard Dawkins, and Sam Harris that have denounced the evils of religion and proclaimed that science has shown that there is no God, The Purpose-Guided Universe shows how one can believe in God and science.

An Introduction to Probability and Inductive Logic


Ian Hacking - 2001
    The book has been designed to offer maximal accessibility to the widest range of students (not only those majoring in philosophy) and assumes no formal training in elementary symbolic logic. It offers a comprehensive course covering all basic definitions of induction and probability, and considers such topics as decision theory, Bayesianism, frequency ideas, and the philosophical problem of induction. The key features of the book are: * A lively and vigorous prose style* Lucid and systematic organization and presentation of the ideas* Many practical applications* A rich supply of exercises drawing on examples from such fields as psychology, ecology, economics, bioethics, engineering, and political science* Numerous brief historical accounts of how fundamental ideas of probability and induction developed.* A full bibliography of further reading Although designed primarily for courses in philosophy, the book could certainly be read and enjoyed by those in the social sciences (particularly psychology, economics, political science and sociology) or medical sciences such as epidemiology seeking a reader-friendly account of the basic ideas of probability and induction. Ian Hacking is University Professor, University of Toronto. He is Fellow of the Royal Society of Canada, Fellow of the British Academy, and Fellow of the American Academy of Arts and Sciences. he is author of many books including five previous books with Cambridge (The Logic of Statistical Inference, Why Does Language Matter to Philosophy?, The Emergence of Probability, Representing and Intervening, and The Taming of Chance).

Conscious Robots: Facing up to the reality of being human.


Paul Kwatz - 2005
    Conscious Robots challenges us to face up to the reality of being human: just because we're conscious doesn't mean we're not robots. So what would we do with free will if we really had it? And how does “being a robot” explain why life, as Buddha suggested, is “inherently unsatisfactory”, despite our luxurious homes, successful careers and loving families? Conscious Robots shows why we’re so convinced that we’re in charge, when we’re really just carrying out our evolved pre-programmed instructions. And reveals the inevitable future, how one day humans will take control of their conscious minds, get happy and stay happy. But it will come too late for you, Dear Reader… so no point buying the book. Unless you’re extremely rich, of course. Then you can pay for the neurochemical research yourself. “Easy to understand and persuasive” “Reminded me of Douglas Adams and Terry Pratchett”

My Favorite Universe


Neil deGrasse Tyson - 2003
    Clear Science Teaching to Set the Stage for an Awe-Inspiring Course Created for a lay audience and readily accessible, in this course science always takes precedence over drama. The lectures are certainly entertaining, often funny, even awe-inspiring at times, as befits the subject matter. Even though you will be entertained, you will be learning good science. Clear introductions to essential principles of physics support these lectures, including density, quantum theory, gravity, and the General Theory of Relativity. Professor Neil deGrasse Tyson also includes forays into disciplines such as chemistry and biology as needed to explain events in astronomy. For example, Dr. Tyson begins one lecture at a point 13 billion years ago, when all space, matter, and energy in the known universe were contained in a volume less than one-trillionth the size of a pinpoint-about the size of a single atom. By the time he finishes, the cosmos has been stretched, the planets and our Earth formed, and 70 percent of existing Earth species have been wiped out by a gigantic asteroidclearing the way for the evolution of humanity. Along the way he has touched on Einstein's famous equation, E=mc2; on the four forces that were once unified in the early cosmos in a way physicists are still trying to explain; and on the chemical enrichment of the universe by exploding supernovae, which give the universe its necessary supply of heavier elements including oxygen, nitrogen, iron and, most important, carbon. Carbon, we learn, is a "sticky" atom, capable of making more kinds of molecules than all other elements combined. It's the ideal element with which to experiment in the building of life forms and is, of course, the element responsible for the remarkable diversity of life, including us. As Dr. Tyson notes, we are made of stardust, just as the planets are. And he has created a course that explains exactly how that came to be, beginning with a grounding in the basic "machinery" of matter, forces, and energy that has been discovered on Earth and which also reveals itself throughout the universe. The Stark and Violent Beauty of the Universe With this basic foundation in place, explanations of cosmic events fall logically into place, and the realities of the universe-including its eventual demise-are revealed in stark and often violent beauty. You learn: how Saturn's rings were formed, and why they will eventually be lost why low-density conditions are necessary to produce the drama of the northern and southern auroras why even the most jagged and wild of the Earth's mountain ranges are, from a cosmic standpoint, really part of a perfectly smooth sphere how black holes are formed and the extraordinary way in which they can wreak havoc in the universe how asteroids moving through space represent threats of extraordinary consequence to Earth, no matter how long those threats may take to be realized why the seemingly infinite panorama of celestial bodies revealed by the Hubble Space Telescope's famous "Deep Field" so intrigued astronomers how astronomers actually look for new planets, why the odds seem overwhelmingly in favor of some kind of life out there, whether we ever make contact or not. Most important, none of these ideas are presented as isolated "space factoids" that serve no purpose but to entertain. They are there to illustrate and reinforce the key principles of physics and astrophysics that are continually being presented in this course. But the inclusion of real science doesn't prevent Dr. Tyson from having some fun, either. When it's time to show how a black hole might remove one from the universe, he leads you right up to the "event horizon" and slips you in-feet first. Since the event horizon represents the point within which nothing, not even light, can escape, you might think this is a bad idea. And you would be right. But as you plummet toward the "singularity" at the heart of the black hole, you will learn firsthand about the interesting effects of gravity truly unleashed, including what physicists refer to, with a straight face, as "spaghettification." (Actually, Professor Tyson recommends that you be sucked in to a large black hole rather than a small one. You'll still be spaghettified, but it won't happen as quickly.) But make no mistake: Dr. Tyson does not consider the cosmos a laughing matter, this kind of whimsical touch notwithstanding. In spite of his training, he remains, admittedly, still in awe of his subject. And he has created a course that might well produce the same feeling in you.

Mathematics In The Modern World: Readings From Scientific American


Morris Kline - 1968
    

Gamma: Exploring Euler's Constant


Julian Havil - 2003
    Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"

Black Holes and Warped Spacetime


William J. Kaufmann III - 1979
    They infinitely warp space and time, allowing nothing to escape: not matter, not even light. They are stellar corpses that have crushed themselves into oblivion, seemingly suspending the traditional laws of physics. The Big bang may have peppered the universe with primordial black holes, as small as protons but as massive as mountains. The universe itself may be disappearing into the final black hole. Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime. The author's engrossing, non-technical explanations are enhanced by numerous illustrations.

The Quantum Astrologer's Handbook


Michael Brooks - 2017
    It resurrects from the vaults of neglect the polymath Jerome Cardano, a Milanese of the sixteenth century. Who is he? A gambler and blasphemer, inventor and chancer, plagued by demons and anxieties, astrologer to kings, emperors and popes. This stubborn and unworldly man was the son of a lawyer and a brothel keeper, but also a gifted physician and the unacknowledged discoverer of the mathematical foundations of quantum physics. That is the argument of this charming and intoxicatingly clever book, which is truly original in its style, and in the manner of the modernists embodies in its very form its theories about the world.'The Quantum Astrologer’s Handbook' is a science book with the panache of a novel, for readers of Carlo Rovelli or Umberto Eco. It is a work of and about genius.