Book picks similar to
Set Theory, Logic and Their Limitations by Moshe Machover


logic
mathematics
set-theory
foundations-and-philosophy-of-maths

Numerical Linear Algebra


Lloyd N. Trefethen - 1997
    The clarity and eloquence of the presentation make it popular with teachers and students alike. The text aims to expand the reader's view of the field and to present standard material in a novel way. All of the most important topics in the field are covered with a fresh perspective, including iterative methods for systems of equations and eigenvalue problems and the underlying principles of conditioning and stability. Presentation is in the form of 40 lectures, which each focus on one or two central ideas. The unity between topics is emphasized throughout, with no risk of getting lost in details and technicalities. The book breaks with tradition by beginning with the QR factorization - an important and fresh idea for students, and the thread that connects most of the algorithms of numerical linear algebra.

Even You Can Learn Statistics: A Guide for Everyone Who Has Ever Been Afraid of Statistics


David M. Levine - 2004
    Each technique is introduced with a simple, jargon-free explanation, practical examples, and hands-on guidance for solving real problems with Excel or a TI-83/84 series calculator, including Plus models. Hate math? No sweat. You'll be amazed how little you need! For those who do have an interest in mathematics, optional "Equation Blackboard" sections review the equations that provide the foundations for important concepts. David M. Levine is a much-honored innovator in statistics education. He is Professor Emeritus of Statistics and Computer Information Systems at Bernard M. Baruch College (CUNY), and co-author of several best-selling books, including Statistics for Managers using Microsoft Excel, Basic Business Statistics, Quality Management, and Six Sigma for Green Belts and Champions. Instructional designer David F. Stephan pioneered the classroom use of personal computers, and is a leader in making Excel more accessible to statistics students. He has co-authored several textbooks with David M. Levine. Here's just some of what you'll learn how to do... Use statistics in your everyday work or study Perform common statistical tasks using a Texas Instruments statistical calculator or Microsoft Excel Build and interpret statistical charts and tables "Test Yourself" at the end of each chapter to review the concepts and methods that you learned in the chapter Work with mean, median, mode, standard deviation, Z scores, skewness, and other descriptive statistics Use probability and probability distributions Work with sampling distributions and confidence intervals Test hypotheses and decision-making risks with Z, t, Chi-Square, ANOVA, and other techniques Perform regression analysis and modeling The easy, practical introduction to statistics--for everyone! Thought you couldn't learn statistics? Think again. You can--and you will!

Lauren Ipsum


Carlos Bueno - 2011
    If the idea of a computer science book without computers upsets you, please close your eyes until you’ve finished reading the rest of this page.The truth is that computer science is not really about the computer. It is just a tool to help you see ideas more clearly. You can see the moon and stars without a telescope, smell the flowers without a fluoroscope, have fun without a funoscope, and be silly sans oscilloscope.You can also play with computer science without... you-know-what. Ideas are the real stuff of computer science. This book is about those ideas, and how to find them.

The Mathematical Theory of Communication


Claude Shannon - 1949
    Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

It's a Numberful World: How Math Is Hiding Everywhere


Eddie Woo - 2019
    . . like a pendulum? These may not look like math questions, but they are-because they all have to do with patterns. And mathematics, at heart, is the study of patterns. That realization changed Eddie Woo's life-by turning the "dry" subject he dreaded in high school into a boundless quest for discovery. Now an award-winning math teacher, Woo sees patterns everywhere: in the "branches" of blood vessels and lightning, in the growth of a savings account and a sunflower, even in his morning cup of tea! Here are twenty-six bite-size chapters on the hidden mathematical marvels that encrypt our email, enchant our senses, and even keep us alive-from the sine waves we hear as "music" to the mysterious golden ratio. This book will change your mind about what math can be. We are all born mathematicians-and It's a Numberful World.

Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers


Dan Rockmore - 2005
    Now, at a moment when mathematicians are finally moving in on a proof, Dartmouth professor Dan Rockmore tells the riveting history of the hunt for a solution.In 1859 German professor Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the occurrence of the prime numbers. Rockmore takes us all the way from Euclid to the mysteries of quantum chaos to show how the Riemann hypothesis lies at the very heart of some of the most cutting-edge research going on today in physics and mathematics.

E=mc²: A Biography of the World's Most Famous Equation


David Bodanis - 2000
    Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee

Against the Gods: The Remarkable Story of Risk


Peter L. Bernstein - 1996
    Peter Bernstein has written a comprehensive history of man's efforts to understand risk and probability, beginning with early gamblers in ancient Greece, continuing through the 17th-century French mathematicians Pascal and Fermat and up to modern chaos theory. Along the way he demonstrates that understanding risk underlies everything from game theory to bridge-building to winemaking.

In Praise of Mathematics


Alain Badiou - 2015
    Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.

Mathematical Elements for Computer Graphics


David F. Rogers - 1976
    It presents in a unified manner an introduction to the mathematical theory underlying computer graphic applications. It covers topics of keen interest to students in engineering and computer science: transformations, projections, 2-D and 3-D curve definition schemes, and surface definitions. It also includes techniques, such as B-splines, which are incorporated as part of the software in advanced engineering workstations. A basic knowledge of vector and matrix algebra and calculus is required.

Gamma: Exploring Euler's Constant


Julian Havil - 2003
    Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"

Introducing Logic: A Graphic Guide


Dan Cryan - 2001
    Yet despite logic's widely acknowledged importance, it remains an unbroken seal for many, due to its heavy use of jargon and mathematical symbolism.This book follows the historical development of logic, explains the symbols and methods involved and explores the philosophical issues surrounding the topic in an easy-to-follow and friendly manner. It will take you through the influence of logic on scientific method and the various sciences from physics to psychology, and will show you why computers and digital technology are just another case of logic in action.

How to Lie with Statistics


Darrell Huff - 1954
    Darrell Huff runs the gamut of every popularly used type of statistic, probes such things as the sample study, the tabulation method, the interview technique, or the way the results are derived from the figures, and points up the countless number of dodges which are used to fool rather than to inform.

Introducing Infinity: A Graphic Guide


Brian Clegg - 2012
    The ancient Greeks were so horrified by the implications of an endless number that they drowned the man who gave away the secret. And a German mathematician was driven mad by the repercussions of his discovery of transfinite numbers. Brian Clegg and Oliver Pugh’s brilliant graphic tour of infinity features a cast of characters ranging from Archimedes and Pythagoras to al-Khwarizmi, Fibonacci, Galileo, Newton, Leibniz, Cantor, Venn, Gödel and Mandelbrot, and shows how infinity has challenged the finest minds of science and mathematics. Prepare to enter a world of paradox.

The Trachtenberg Speed System of Basic Mathematics


Jakow Trachtenberg - 1960
    Described as the 'shorthand of mathematics', the Trachtenberg system only requires the ability to count from one to eleven. Using a series of simplified keys it allows anyone to master calculations, giving greater speed, ease in handling numbers and increased accuracy.Jakow Trachtenberg believed that everyone is born with phenomenal abilities to calculate. He devised a set of rules that allows every child to make multiplication, division, addition, subtraction and square-root calculations with unerring accuracy and at remarkable speed. It is the perfect way to gain confidence with numbers.