Computers and Intractability: A Guide to the Theory of NP-Completeness


Michael R. Garey - 1979
    Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.

Introduction to Graph Theory


Richard J. Trudeau - 1994
    This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.

Foundations of Software Testing ISTQB Certification


Rex Black - 2006
    Completely updated to comprehensively reflect the most recent changes to the ISTQB Foundation Syllabus, the book adopts a practical, hands-on approach, covering the fundamental topics that every system and software tester should know. The authors are themselves developers of the ISTQB syllabus and are highly respected international authorities, teachers and authors within the field of software testing.

Ghost in the Wires: My Adventures as the World's Most Wanted Hacker


Kevin D. Mitnick - 2011
    While other nerds were fumbling with password possibilities, this adept break-artist was penetrating the digital secrets of Sun Microsystems, Digital Equipment Corporation, Nokia, Motorola, Pacific Bell, and other mammoth enterprises. His Ghost in the Wires memoir paints an action portrait of a plucky loner motivated by a passion for trickery, not material game. (P.S. Mitnick's capers have already been the subject of two books and a movie. This first-person account is the most comprehensive to date.)

Algorithms


Sanjoy Dasgupta - 2006
    Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University

A New Kind of Science


Stephen Wolfram - 1997
    Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton

CCNA Routing and Switching Study Guide: Exams 100-101, 200-101, and 200-120


Todd Lammle - 2013
    This all-purpose CCNA study guide methodically covers all the objectives of the ICND1 (100-101) and ICND2 (200-101) exams as well as providing additional insight for those taking CCNA Composite (200-120) exam. It thoroughly examines operation of IP data networks, LAN switching technologies, IP addressing (IPv4/IPv6), IP routing technologies, IP services, network device security, troubleshooting, and WAN technologies.Valuable study tools such as a companion test engine that includes hundreds of sample questions, a pre-assessment test, and multiple practice exams. Plus, you'll also get access to hundreds of electronic flashcards, author files, and a network simulator.CCNA candidates may choose to take either the ICND1(100-101) and ICND2 (200-101) exams or the CCNA Composite exam (200-120); this study guide covers the full objectives of all three Written by bestselling Sybex study guide author Todd Lammle, an acknowledged authority on all things Cisco Covers essential Cisco networking topics such as operating an IP data network, IP addressing, switching and routing technologies, troubleshooting, network device security, and much more Includes a comprehensive set of study tools including practice exams, electronic flashcards, comprehensive glossary of key terms, videos, and a network simulator that can be used with the book's hands-on labs Bonus Content: Access to over 40 MicroNugget videos from CBT Nuggets CCNA Routing and Switching Study Guide prepares you for CCNA certification success.

Learning From Data: A Short Course


Yaser S. Abu-Mostafa - 2012
    Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.

Artificial Intelligence for Humans, Volume 1: Fundamental Algorithms


Jeff Heaton - 2013
    This book teaches basic Artificial Intelligence algorithms such as dimensionality, distance metrics, clustering, error calculation, hill climbing, Nelder Mead, and linear regression. These are not just foundational algorithms for the rest of the series, but are very useful in their own right. The book explains all algorithms using actual numeric calculations that you can perform yourself. Artificial Intelligence for Humans is a book series meant to teach AI to those without an extensive mathematical background. The reader needs only a knowledge of basic college algebra or computer programming—anything more complicated than that is thoroughly explained. Every chapter also includes a programming example. Examples are currently provided in Java, C#, R, Python and C. Other languages planned.

Growing Rails Applications in Practice


Henning Koch - 2014
    

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Programming the World Wide Web


Robert W. Sebesta - 2001
    'Programming The World Wide Web', written by bestselling author, Robert Sebesta, provides a comprehensive introduction to the programming tools and skills required for building and maintaining server sites on the Web.

Build Your Own Database Driven Website Using PHP & MySQL


Kevin Yank - 2001
    There has been a marked increase in the adoption of PHP, most notably in the beginning to intermediate levels. PHP now boasts over 30% of the server side scripting market (Source: php.weblogs.com).The previous edition sold over 17,000 copies exclusively through Sitepoint.com alone. With the release of PHP 5, SitePoint have updated this bestseller to reflect best practice web development using PHP 5 and MySQL 4.The 3rd Edition includes more code examples and also a new bonus chapter on structured PHP Programming which introduces techniques for organizing real world PHP applications to avoid code duplication and ensure code is manageable and maintainable. The chapter introduces features like include files, user-defined function libraries and constants, which are combined to produce a fully functional access control system suitable for use on any PHP Website.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.