Gravity: An Introduction to Einstein's General Relativity


James B. Hartle - 2002
    Using a "physics first" approach to the subject, renowned relativist James B. Hartle provides a fluent and accessible introduction that uses a minimum of new mathematics and is illustrated with a wealth of exciting applications. KEY TOPICS: The emphasis is on the exciting phenomena of gravitational physics and the growing connection between theory and observation. The Global Positioning System, black holes, X-ray sources, pulsars, quasars, gravitational waves, the Big Bang, and the large scale structure of the universe are used to illustrate the widespread role of how general relativity describes a wealth of everyday and exotic phenomena. MARKET: For anyone interested in physics or general relativity.

Abstract Algebra


I.N. Herstein - 1986
    Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.

Introductory Circuit Analysis


Robert L. Boylestad - 1968
    Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

Einstein's Relativity and the Quantum Revolution: Modern Physics for Non-Scientists


Richard Wolfson - 2000
    Relativity and quantum physics touch the very basis of physical reality, altering our commonsense notions of space and time, cause and effect. Both have reputations for complexity. But the basic ideas behind relativity and quantum physics are, in fact, simple and comprehensible by anyone. As Professor Wolfson points out, the essence of relativity can be summed up in a single sentence: The laws of physics are the same for all observers in uniform motion. The same goes for quantum theory, which is based on the principle that the "stuff " of the universe-matter and energy-is not infinitely divisible but comes in discrete chunks called "quanta." Profound ... Beautiful ... Relevant Why should you care about these landmark theories? Because relativity and quantum physics are not only profound and beautiful ideas in their own right, they are also the gateway to understanding many of the latest science stories in the media. These are the stories about time travel, string theory, black holes, space telescopes, particle accelerators, and other cutting-edge developments. Consider these ideas: Although Einstein's theory of general relativity dates from 1914, it has not been possible to test certain predictions until recently. The Hubble Space Telescope is providing some of the most striking confirmations of the theory, including certain evidence for the existence of black holes, objects that warp space and time so that not even light can escape. Also, the expansion of the universe predicted by the theory of general relativity is now a known rate. General relativity also predicts an even weirder phenomenon called "wormholes" that offer shortcuts to remote reaches of time and space. According to Einstein's theory of special relativity, two twins would age at different rates if one left on a high-speed journey to a distant star and then returned. This experiment has actually been done, not with twins, but with an atomic clock flown around the world. Another fascinating experiment confirming that time slows as speed increases comes from measuring muons at the top and bottom of mountains. A seemingly absurd consequence of quantum mechanics, called "quantum tunneling," makes it possible for objects to materialize through impenetrable barriers. Quantum tunneling happens all the time on the subatomic scale and plays an important role in electronic devices and the nuclear processes that keep the sun shining. Some predictions about the expansion of the universe were so odd that Einstein himself tried to rewrite the mathematics in order to eliminate them. When Hubble discovered the expansion of the universe, Einstein called the revisions the biggest mistake he had ever made. An intriguing thought experiment called "Schrödinger's cat" suggests that a cat in an enclosed box is simultaneously alive and dead under experimental conditions involving quantum phenomena. From Aristotle to the Theory of Everything Professor Wolfson begins with a brief overview of theories of physical reality starting with Aristotle and culminating in Newtonian or "classical" physics. Then he outlines the logic that led to Einstein's theory of special relativity, and the simple yet far-reaching insight on which it rests. With that insight in mind, you move on to consider Einstein's theory of general relativity and its interpretation of gravitation in terms of the curvature of space and time. Professor Wolfson then shows how inquiry into matter at the atomic and subatomic scales led to quandaries that are resolved-or at least clarified-by quantum mechanics, a vision of physical reality so at odds with our experience that it nearly defies language. Bringing relativity and quantum mechanics into the same picture leads to hypotheses about the origin, development, and possible futures of the entire universe, and the possibility that physics can produce a "theory of everything" to account for all aspects of the physical world. Fascinating Incidents and Ideas Along the way, you'll explore these fascinating incidents and ideas: In the 1880s, Albert Michelson and Edward Morley conducted an experiment to determine the motion of the Earth relative to the ether, which was a supposedly imponderable substance pervading all of space. You'll learn about their experiment, its shocking result, and the resulting theoretical crisis. In 1905, a young Swiss patent clerk named Albert Einstein resolved the crisis by discarding the ether concept and asserting the principle of relativity-that the laws of physics are the same for all observers in uniform motion. Relativity implies that the time order of events can be different in different reference frames. Does this wreak havoc with cause and effect? And why does Einstein assert that nothing can go faster than light? Shortly after publishing his 1905 paper on special relativity, Einstein realized that his theory required a fundamental equivalence between mass and energy, which he expressed in the equation E=mc2. Among other things, this famous formula means that the energy contained in a single raisin could power a large city for a whole day. Historically, the path to general relativity followed Einstein's attempt to incorporate gravity into relativity theory, which led to his understanding of gravity not as a force, but as a local manifestation of geometry in curved spacetime. Quantum theory places severe limits on our ability to observe nature at the atomic scale because it implies that the act of observation necessarily disturbs the thing that is being observed. The result is Werner Heisenberg's famous "uncertainty principle." Are quarks, the particles that make up protons and neutrons, the truly elementary particles? What are the three fundamental forces that physicists identify as holding particles together? Could they be manifestations of a single, universal force? A Teaching Legend On his own Middlebury College campus, Professor Wolfson is a teaching legend with an infectious enthusiasm for his subject and a knack for conveying difficult concepts in a way that fosters true understanding. He is the author of an introductory text on physics, a contributor to the esteemed publication Scientific American, and a specialist in interpreting science for the nonspecialist. In this course, Professor Wolfson uses extensive illustrations and diagrams to help bring to life the theories and concepts that he discusses. Thus we highly recommend our DVD version, although Professor Wolfson is mindful of our audio students and carefully describes visual materials throughout his lectures. Professor Richard Wolfson on the Second Edition of Einstein's Relativity: "The first version of this course was produced in 1995. In this new version, I have chosen to spend more time on the philosophical interpretation of quantum physics, and on recent experiments relevant to that interpretation. I have also added a final lecture on the theory of everything and its possible implementation through string theory. The graphic presentations for the DVD version have also been extensively revised and enhanced. But the goal remains the same: to present the key ideas of modern physics in a way that makes them clear to the interested layperson."

Understanding Thermodynamics


Hendrick C. Van Ness - 1983
    Language is informal, examples are vivid and lively, and the perspectivie is fresh. Based on lectures delivered to engineering students, this work will also be valued by scientists, engineers, technicians, businessmen, anyone facing energy challenges of the future.

Quantum Field Theory in a Nutshell


A. Zee - 2003
    A quantum field theory text for the twenty-first century, this book makes the essential tool of modern theoretical physics available to any student who has completed a course on quantum mechanics and is eager to go on.Quantum field theory was invented to deal simultaneously with special relativity and quantum mechanics, the two greatest discoveries of early twentieth-century physics, but it has become increasingly important to many areas of physics. These days, physicists turn to quantum field theory to describe a multitude of phenomena.Stressing critical ideas and insights, Zee uses numerous examples to lead students to a true conceptual understanding of quantum field theory--what it means and what it can do. He covers an unusually diverse range of topics, including various contemporary developments, while guiding readers through thoughtfully designed problems. In contrast to previous texts, Zee incorporates gravity from the outset and discusses the innovative use of quantum field theory in modern condensed matter theory.Without a solid understanding of quantum field theory, no student can claim to have mastered contemporary theoretical physics. Offering a remarkably accessible conceptual introduction, this text will be widely welcomed and used.

Chance: The science and secrets of luck, randomness and probability (New Scientist)


Michael Brooks - 2015
    So it's not surprising that we persist in thinking that we're in with a chance, whether we're playing the lottery or working out the likelihood of extra-terrestrial life. In Chance, a (not entirely) random selection of the New Scientist's sharpest minds provide fascinating insights into luck, randomness, risk and probability. From the secrets of coincidence to placing the perfect bet, the science of random number generation to the surprisingly haphazard decisions of criminal juries, it will explore these, and many other, tantalising questions.Following on from the bestselling Nothing and Question Everything, this book will open your eyes to the weird and wonderful world of chance - and help you see when some things, in fact, aren't random at all.

CRC Handbook of Chemistry and Physics


David R. Lide - 1984
    This edition contains NEW tables on Properties of Ionic Liquids, Solubilities of Hydrocarbons in Sea Water, Solubility of Organic Compounds in Superheated Water, and Nutritive Value of Foods. It also updates many tables including Critical Constants, Heats of Vaporization, Aqueous Solubility of Organic Compounds, Vapor Pressure of Mercury, Scientific Abbreviations and Symbols, and Bond Dissociation Energies. The 88th Edition also presents a new Foreword written by Dr. Harold Kroto, a 1996 Nobel Laureate in Chemistry.

Beyond Weird


Philip Ball - 2018
    But when Feynman said he didn’t understand quantum mechanics, he didn’t mean that he couldn’t do it – he meant that’s all he could do. He didn’t understand what the maths was saying: what quantum mechanics tells us about reality.Over the past decade or so, the enigma of quantum mechanics has come into sharper focus. We now realise that quantum mechanics is less about particles and waves, uncertainty and fuzziness, than a theory about information: about what can be known and how.This is more disturbing than our bad habit of describing the quantum world as ‘things behaving weirdly’ suggests. It calls into question the meanings and limits of space and time, cause and effect, and knowledge itself.The quantum world isn’t a different world: it is our world, and if anything deserves to be called ‘weird’, it’s us. This exhilarating book is about what quantum maths really means – and what it doesn’t mean.

On the Sensations of Tone


Hermann von Helmholtz - 1863
    It bridges the gap between the natural sciences and music theory and, nearly a century after its first publication, it is still a standard text for the study of physiological acoustics — the scientific basis of musical theory. It is also a treasury of knowledge for musicians and students of music and a major work in the realm of aesthetics, making important contributions to physics, anatomy, and physiology in its establishment of the physical theory of music. Difficult scientific concepts are explained simply and easily for the general reader.The first two parts of this book deal with the physics and physiology of music. Part I explains the sensation of sound in general, vibrations, sympathetic resonances, and other phenomena. Part II cover combinational tones and beats, and develops Helmholtz's famous theory explaining why harmonious chords are in the ratios of small whole numbers (a problem unsolved since Pythagoras).Part III contains the author's theory on the aesthetic relationship of musical tones. After a survey of the different principles of musical styles in history (tonal systems of Pythagoras, the Church, the Chinese, Arabs, Persians, and others), he makes a detailed study of our own tonal system (keys, discords, progression of parts).Important points in this 576-page work are profusely illustrated with graphs, diagrams, tables, and musical examples. 33 appendices discuss pitch, acoustics, and music, and include a very valuable table and study of the history of pitch in Europe from the fourteenth to the nineteenth centuries.

Introduction to Classical Mechanics: With Problems and Solutions


David Morin - 2007
    It also explores more advanced topics, such as normal modes, the Lagrangian method, gyroscopic motion, fictitious forces, 4-vectors, and general relativity. It contains more than 250 problems with detailed solutions so students can easily check their understanding of the topic. There are also over 350 unworked exercises which are ideal for homework assignments. Password protected solutions are available to instructors at www.cambridge.org/9780521876223. The vast number of problems alone makes it an ideal supplementary text for all levels of undergraduate physics courses in classical mechanics. Remarks are scattered throughout the text, discussing issues that are often glossed over in other textbooks, and it is thoroughly illustrated with more than 600 figures to help demonstrate key concepts.

Quantum Theory Cannot Hurt You


Marcus Chown - 2005
    Together, they explain virtually everything about the world we live in. But, almost a century after their advent, most people haven't the slightest clue what either is about. Did you know that there's so much empty space inside matter that the entire human race could be squeezed into the volume of a sugar cube? Or that you grow old more quickly on the top floor of a building than on the ground floor? And did you realise that 1 percent of the static on a TV tuned between stations is a relic of the Big Bang?

The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography


Simon Singh - 1999
    From Mary, Queen of Scots, trapped by her own code, to the Navajo Code Talkers who helped the Allies win World War II, to the incredible (and incredibly simple) logisitical breakthrough that made Internet commerce secure, The Code Book tells the story of the most powerful intellectual weapon ever known: secrecy.Throughout the text are clear technical and mathematical explanations, and portraits of the remarkable personalities who wrote and broke the world’s most difficult codes. Accessible, compelling, and remarkably far-reaching, this book will forever alter your view of history and what drives it. It will also make you wonder how private that e-mail you just sent really is.