Book picks similar to
Python for Biologists: A Complete Programming Course for Beginners by Martin O. Jones
programming
science
reference
non-fiction
Systems Analysis and Design
Gary B. Shelly - 1991
Students will find concepts easy-to-understand through the clear writing style and full-color figures that illustrate current technology and trends. Examples and cases are drawn from actual systems projects that enable students to learn in the context of solving problems, much like the ones they will encounter on the job. This approach, combined with motivating tools such as the SCR Associates interactive Web-Based Case Study, Systems Analyst's Toolkit, the Student Study Tool on CD-ROM, and more, makes Systems Analysis and Design, Seventh Edition a wise and exciting choice for your introductory systems analysis and design class.
Admission Assessment Exam Review
HESI - 2012
Plus, it helps you identify areas of weakness so you can focus your study time. Sample problems and step-by-step examples with explanations in the math and physics sections show you how to work through each problem so you understand the steps it takes to complete the equation. Practice tests with answer keys for each topic - located in the appendices for quick access - help you assess your understanding of each topic and familiarize you with the types of questions you're likely to encounter on the actual exam. HESI Hints boxes offer valuable test-taking tips, as well as rationales, suggestions, examples, and reminders for specific topics.End-of-chapter review questions help you gauge your understanding of chapter content.A full-color layout and more illustrations in the life science chapters visually reinforce key concepts for better understanding.Expanded and updated content in each chapter ensures you're studying the most current content.Basic algebra review in the math section offers additional review and practice.Color-coded chapters help you quickly find specific topic sections.Helpful organizational features in each chapter include an introduction, key terms, chapter outline, and a bulleted chapter summary to help you focus your study.A glossary at the end of the text offers quick access to key terms and their definitions.
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Internet & World Wide Web: How to Program
Paul Deitel - 1999
Internet and World Wide Web How to Program, 4e introduces students with little or no programming experience to the exciting world of Web-Based applications. The book has been substantially revised to reflect today's Web 2.0 rich Internet application-development methodologies. A comprehensive book that teaches the fundamentals needed to program on the Internet, this text provides in-depth coverage of introductory programmming principles, various markup languages (XHTML, Dynamic HTML and XML), several scripting languages (JavaScript, PHP, Ruby/Ruby on Rails and Perl); AJAX, web services, Web Servers (IIS and Apache) and relational databases (MySQL/Apache Derby/Java DB) -- all the skills and tools needed to create dynamic Web-based applications. The text contains comprehensive introductions to ASP.NET 2.0 and JavaServer Faces (JSF). Hundreds of live-code examples of real applications throughout the book available for download allow readers to run the applications and see and hear the outputs.The book provides instruction on building Ajax-enabled rich Internet applications that enhance the presentation of online content and give web applications the look and feel of desktop applications. The chapter on Web 2.0 and Internet business exposes readers to a wide range of other topics associated with Web 2.0 applications and businesses After mastering the material in this book, students will be well prepared to build real-world, industrial strength, Web-based applications.
Hands-On Programming with R: Write Your Own Functions and Simulations
Garrett Grolemund - 2014
With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools.RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time.Work hands-on with three practical data analysis projects based on casino gamesStore, retrieve, and change data values in your computer's memoryWrite programs and simulations that outperform those written by typical R usersUse R programming tools such as if else statements, for loops, and S3 classesLearn how to write lightning-fast vectorized R codeTake advantage of R's package system and debugging toolsPractice and apply R programming concepts as you learn them
R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics
Paul Teetor - 2011
The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform other basic functionsInput and output dataTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals, and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your dataWonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time.--Jeffrey Ryan, software consultant and R package author
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Python Programming for Beginners: An Introduction to the Python Computer Language and Computer Programming (Python, Python 3, Python Tutorial)
Jason Cannon - 2014
There can be so much information available that you can't even decide where to start. Or worse, you start down the path of learning and quickly discover too many concepts, commands, and nuances that aren't explained. This kind of experience is frustrating and leaves you with more questions than answers.Python Programming for Beginners doesn't make any assumptions about your background or knowledge of Python or computer programming. You need no prior knowledge to benefit from this book. You will be guided step by step using a logical and systematic approach. As new concepts, commands, or jargon are encountered they are explained in plain language, making it easy for anyone to understand. Here is what you will learn by reading Python Programming for Beginners:
When to use Python 2 and when to use Python 3.
How to install Python on Windows, Mac, and Linux. Screenshots included.
How to prepare your computer for programming in Python.
The various ways to run a Python program on Windows, Mac, and Linux.
Suggested text editors and integrated development environments to use when coding in Python.
How to work with various data types including strings, lists, tuples, dictionaries, booleans, and more.
What variables are and when to use them.
How to perform mathematical operations using Python.
How to capture input from a user.
Ways to control the flow of your programs.
The importance of white space in Python.
How to organize your Python programs -- Learn what goes where.
What modules are, when you should use them, and how to create your own.
How to define and use functions.
Important built-in Python functions that you'll use often.
How to read from and write to files.
The difference between binary and text files.
Various ways of getting help and find Python documentation.
Much more...
Every single code example in the book is available to download, providing you with all the Python code you need at your fingertips! Scroll up, click the Buy Now With 1 Click button and get started learning Python today!
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
R Graphics Cookbook: Practical Recipes for Visualizing Data
Winston Chang - 2012
Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works.Most of the recipes use the ggplot2 package, a powerful and flexible way to make graphs in R. If you have a basic understanding of the R language, you're ready to get started.Use R's default graphics for quick exploration of dataCreate a variety of bar graphs, line graphs, and scatter plotsSummarize data distributions with histograms, density curves, box plots, and other examplesProvide annotations to help viewers interpret dataControl the overall appearance of graphicsRender data groups alongside each other for easy comparisonUse colors in plotsCreate network graphs, heat maps, and 3D scatter plotsStructure data for graphing
Planning, Implementing, and Evaluating Health Promotion Programs: A Primer
James F. McKenzie - 1992
The Fifth Edition features updated information throughout, including new theories and models such as the Healthy Action Process Approach (HAPA) and the Community Readiness Model (CRM), sections on grant writing and preparing a budget, real-life examples of marketing principles and processes, and a new classification system for evaluation approaches and designs. Health Education, Health Promotion, Health Educators, and Program Planning, Models for Program Planning in Health Promotion, Starting the Planning Process, Assessing Needs, Measurement, Measures, Measurement Instruments and Sampling, Mission Statement, Goals, and Objectives, Theories and Models Commonly Used for Health Promotion Interventions, Interventions, Community Organizing and Community Building, Identification and Allocation of Resources, Marketing: Making Sure Programs Respond to Wants and Needs of Consumers, Implementation: Strategies and Associated Concerns, Evaluation: An Overview, Evaluation Approaches and Designs, Data Analysis and Reporting. Intended for those interested in learning the basics of planning, implementing, and evaluating health promotion programs
Murach's HTML5 and CSS3: Training and Reference
Zak Ruvalcaba - 2011
This title also teaches you how to use the HTML5 and CSS3 features alongside the earlier standards.
The C# Programming Yellow Book
Rob Miles - 2010
With jokes, puns, and a rigorous problem solving based approach. You can download all the code samples used in the book from here: http://www.robmiles.com/s/Yellow-Book...