An Inconvenient Deception: How Al Gore Distorts Climate Science and Energy Policy


Roy W. Spencer - 2017
    As was the case with Gore's first movie (An Inconvenient Truth), the movie is bursting with bad science, bad policy and some outright falsehoods. The storm events Gore addresses occur naturally, and there is little or no evidence they are being made worse from human activities: sea level is rising at the same rate it was before humans started burning fossil fuels; in Miami Beach the natural rise is magnified because buildings and streets were constructed on reclaimed swampland that has been sinking; the 9/11 memorial was not flooded by sea level rise from melting ice sheets, but a storm surge at high tide, which would have happened anyway and was not predicted by Gore in his first movie, as he claims; the Greenland ice sheet undergoes melt every summer, which was large in 2012 but then unusually weak in 2017; glaciers advance and retreat naturally, as evidenced by 1,000 to 2,000 year old tree stumps being uncovered in Alaska; rain gauge measurements reveal the conflict in Syria was not caused by reduced rainfall hurting farming there, and in fact the Middle East is greening from increasing CO2 in the atmosphere; agricultural yields in China have been rising, not falling as claimed by Gore. The renewable energy sources touted by Gore (wind and solar), while a laudable goal for our future, are currently very expensive: their federal subsidies per kilowatt-hour of energy produced are huge compared to coal, natural gas, and nuclear power. These costs are hidden from the public in increased federal and state tax rates. Gore is correct that "it is right to save humanity", but what we might need saving from the most are bad decisions that reduce prosperity and hurt the poor.

The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds


Jeffrey R. Weeks - 1985
    Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.

Apollo 1: The Tragedy That Put Us on the Moon


Ryan S. Walters - 2021
    All three astronauts were experienced pilots and had dreams of one day walking on the moon, but little did they know, nor did anyone else, that once they entered the spacecraft that cold winter day they would never leave it alive. The Apollo program would be perilously close to failure before it ever got off the ground. But rather than dooming the space program, this tragedy caused the spacecraft to be completely overhauled, creating a stellar flying machine to achieve the program’s primary goal: putting man on the moon. Apollo 1 is a candid portrayal of the astronauts, the disaster that killed them, and its aftermath. In it, readers will learn: How the Apollo 1 spacecraft was doomed from the start, with miles of uninsulated wiring and tons of flammable materials in a pure oxygen atmosphere, along with a hatch that wouldn’t open How, due to political pressure, the government contract to build the Apollo 1 craft went to a bidder with an inferior plan How public opinion polls were beginning to turn against the space control before the tragedy and got much worse after Apollo 1 is about America fulfilling its destiny of man setting foot on the moon. It’s also about the three American heroes who lost their lives in the tragedy, but whose lives were not lost in vain.

13.8: The Quest to Find the True Age of the Universe and the Theory of Everything


John Gribbin - 2015
    The general theory of relativity describes the behavior of very large things, and quantum theory the behavior of very small things. In this landmark book, John Gribbin—one of the best-known science writers of the past thirty years—presents his own version of the Holy Grail of physics, the search that has been going on for decades to find a unified “Theory of Everything” that combines these ideas into one mathematical package, a single equation that could be printed on a T-shirt, containing the answer to life, the Universe, and everything. With his inimitable mixture of science, history, and biography, Gribbin shows how—despite skepticism among many physicists—these two great theories are very compatible, and point to a deep truth about the nature of our existence. The answer lies, intriguingly, with the age of the universe: 13.8 billion years.

Discovering the Universe [with CD-ROM]


Neil F. Comins - 1984
    The accompanying CD-ROM features a special student version of the award-winning virtual planetarium software Starry Night plus software animations and videos, all illustrations from the text, interactive Q&A and exercises, and supplementary resources. Material can be updated periodically from the Freeman Web site. www.whfreeman.com/astronomy. There is an online study guide offering a CD-Web guide, chapter objectives, key terms, review questions, Starry Night observations exercises and online tutorials.

The Physics of Climate Change


Lawrence M. Krauss - 2021
    Here you’ll find the facts, the processes, the physics of our complex and changing climate, but delivered with eloquence and urgency. Lawrence Krauss writes with a clarity that transcends mere politics. Prose and poetry were never better bedfellows.” —Ian McEwan, Booker Prize-winning author of Solar and Machines Like Me “Lawrence Krauss has written the ideal book for anyone interested in understanding the science of global warming. It is at once elegant, rigorous, and timely.”—Elizabeth Kolbert, staff writer, The New Yorker, and Pulitzer prize-winning author of The Sixth Extinction “A brief, brilliant, and charming summary of what physicists know about climate change and how they learned it.” —Sheldon Glashow, Nobel Laureate in Physics, Metcalf Distinguished Professor Emeritus, Boston University “The distinguished scientist Lawrence Krauss turns his penetrating gaze on the most pressing existential threat facing our world: climate change. It is brimming with information lucidly analysed. Such hope as there is lies in science, and a physicist of Dr. Krauss’s imaginative versatility is unusually qualified to offer it.” —Richard Dawkins, author of The Blind Watchmaker and Science in the Soul “Lucid and gripping, this study of the most severe challenge humans have ever faced leads the reader from the basic physics of climate change to recognition of the damage that humans have already caused and on to the prospects that lie ahead if we do not change course soon.” —Noam Chomsky, Laureate Professor, University of Arizona, author of Internationalism or Extinction? “Lawrence Krauss tells the story of climate change with erudition, urgency, and passion. It is our great good luck that one of our most brilliant scientists is also such a gifted writer. This book will change the way we think about the future.” —Jennifer Finney Boylan, author of Good Boy and She’s Not There “Everything on climate change that I’ve seen is either dumbed down and bossy or written for other climate scientists. I’ve been looking for a book that can let me, a layperson, understand the science. This book does just what I was looking for. It is important.” —Penn Jillette, Magician, author of Presto! and God, No! “The renowned physicist Lawrence Krauss makes the science behind one of the most important issues of our time accessible to all.” —Richard C. J. Somerville, Distinguished Professor Emeritus, Scripps Institution of Oceanography, University of California, San Diego “Lawrence Krauss is a fine physicist, a talented writer, and a scientist deeply engaged with public affairs. His book deserves wide readership. The book’s eloquent exposition of the science and the threats should enlighten all readers and motivate them to an urgent concern about our planet’s future.” —Lord Martin Rees, Astronomer Royal, former president of the Royal Society, author of On the Future: Prospects for Humanity

Fields of Color: The theory that escaped Einstein


Rodney A. Brooks - 2010
    QFT is the only physics theory that makes sense and that dispels or resolves the paradoxes of relativity and quantum mechanics that have confused and mystified so many people.

The Pioneer Detectives: Did a distant spacecraft prove Einstein and Newton wrong? (Kindle Single)


Konstantin Kakaes - 2013
    No one seemed able to agree on a cause. (Dark matter? Tensor–vector–scalar gravity? Collisions with gravitons?) What did seem clear to those who became obsessed with it was that the Pioneer Anomaly had the potential to upend Einstein and Newton—to change everything we know about the universe.With riveting prose and the precision of an expert, Konstantin Kakaes gives us a scientific police procedural, tracking the steps of those who sought to unravel this high-stakes enigma. His thrilling account draws on extensive interviews and archival research, following the story from the Anomaly’s initial discovery, through decades of tireless investigation, to its ultimate conclusion. “The Pioneer Detectives” is a definitive account not just of the Pioneer Anomaly but of how scientific knowledge gets made and unmade, with scientists sometimes putting their livelihoods on the line in pursuit of cosmic truth. Perfect for fans of John McPhee, Thomas Kuhn, and Ed McBain, this is also an immensely enjoyable story accessible to anyone who loves brilliant, fascinating long-form journalism.* * * ABOUT THE AUTHOR: Konstantin Kakaes is a Bernard L. Schwartz fellow at the New America Foundation, writing about science and technology, and is the former Mexico City bureau chief for The Economist. His work has been published in The Wall Street Journal, Foreign Policy, and The Washington Post and appears frequently in Slate. Before becoming a journalist, he studied physics at Harvard University.

Big Bang: The Origin of the Universe


Simon Singh - 2004
    In this amazingly comprehensible history of the universe, Simon Singh decodes the mystery behind the Big Bang theory, lading us through the development of one of the most extraordinary, important, and awe-inspiring theories in science.

A World Beyond Physics: The Emergence and Evolution of Life


Stuart A. Kauffman - 2019
    Among the estimated one hundred billion solar systems in the known universe, evolving life is surely abundant. That evolution is a process of becoming in each case. Since Newton, we have turned to physics to assess reality. Butphysics alone cannot tell us where we came from, how we arrived, and why our world has evolved past the point of unicellular organisms to an extremely complex biosphere.Building on concepts from his work as a complex systems researcher at the Santa Fe Institute, Kauffman focuses in particular on the idea of cells constructing themselves and introduces concepts such as constraint closure. Living systems are defined by the concept of organization which has notbeen focused on in enough in previous works. Cells are autopoetic systems that build themselves: they literally construct their own constraints on the release of energy into a few degrees of freedom that constitutes the very thermodynamic work by which they build their own self creating constraints.Living cells are machines that construct and assemble their own working parts. The emergence of such systems-the origin of life problem-was probably a spontaneous phase transition to self-reproduction in complex enough prebiotic systems. The resulting protocells were capable of Darwin's heritablevariation, hence open-ended evolution by natural selection. Evolution propagates this burgeoning organization. Evolving living creatures, by existing, create new niches into which yet further new creatures can emerge. If life is abundant in the universe, this self-constructing, propagating, exploding diversity takes us beyond physics to biospheres everywhere.

Galileo and the Science Deniers


Mario Livio - 2020
    “We really need this story now, because we’re living through the next chapter of science denial” (Bill McKibben).Galileo’s story may be more relevant today than ever before. At present, we face enormous crises—such as the minimization of the dangers of climate change—because the science behind these threats is erroneously questioned or ignored. Galileo encountered this problem 400 years ago. His discoveries, based on careful observations and ingenious experiments, contradicted conventional wisdom and the teachings of the church at the time. Consequently, in a blatant assault on freedom of thought, his books were forbidden by church authorities. Astrophysicist and bestselling author Mario Livio draws on his own scientific expertise to provide captivating insights into how Galileo reached his bold new conclusions about the cosmos and the laws of nature. A freethinker who followed the evidence wherever it led him, Galileo was one of the most significant figures behind the scientific revolution. He believed that every educated person should know science as well as literature, and insisted on reaching the widest audience possible, publishing his books in Italian rather than Latin. Galileo was put on trial with his life in the balance for refusing to renounce his scientific convictions. He remains a hero and inspiration to scientists and all of those who respect science—which, as Livio reminds us in this gripping book, remains threatened even today.

Superheavy: Making and Breaking the Periodic Table


Kit Chapman - 2019
    The science of element discovery is a truly fascinating field, and is constantly rewriting the laws of chemistry and physics as we know them. Superheavy is the first book to take an in-depth look at how synthetic elements are discovered, why they matter and where they will take us. From the Cold War nuclear race to the present day, scientists have stretched the periodic table to 118 elements. They have broken the rules of the periodic table, rewriting the science we're taught in school, and have the potential to revolutionize our lives.Kit Chapman takes us back to the very beginning, with the creation of the atomic bomb. He tells the story of the major players, such as Ernest Lawrence who revolutionized the field of particle physics with the creation of the cyclotron; Yuri Oganessian, the guerilla scientist who opened up a new era of discovery in the field and is the only living scientists to have an element named after him; and Victor Ninov, the disgraced physicist who almost pulled off the greatest fraud in nuclear science. This book will bring us in a full circle back to Oak Ridge National Laboratory, where the first atomic bomb was developed, and that has more recently been an essential player in creating the new superheavy element 117.Throughout, Superheavy explains the complex science of element discovery in clear and easy-to-follow terms. It walks through the theories of atomic structure, discusses the equipment used and explains the purpose of the research. By the end of the book readers will not only marvel at how far we've come, they will be in awe of where we are going and what this could mean for the worlds of physics and chemistry as we know them today.

Astronomy


Patrick Moore - 1995
    Filled with data about the Earth, Moon, the planets, the stars, our Galaxy, and the myriad galaxies in deep space, it also reveals the latest scientific discoveries about black holes, quasars, and the origins of the Universe. Written by a premier astronomy expert, this book begins with a discussion of the Sun, from sunspots to solar eclipses. It then features over 100 tables on characteristics of the Moon, and the names, positions, sizes, and other key descriptors of all the planets and their satellites. The book tabulates solar and lunar eclipse, comets, close-approach asteroids, and significant meteor showers dates. Twenty-four maps show the surface features of the planets and their moons. The author then looks to the stars, their distances and movements, and their detailed classification and evolution. Forty-eight star charts cover both northern and southern hemispheres, enabling you to track down and name the main stars in all the constellations. The maps are supported by detailed tables of the names, positions, magnitudes, and spectra of the main stars in each constellation, along with key data on galaxies, nebulae, and clusters. There is a useful catalogue of the world's great telescopes and observatories, a history of astronomy and of space research, and biographies of 250 astronomers who have been most influential in developing the current understanding of the subject.

The Perfect Machine: Building the Palomar Telescope


Ronald Florence - 1994
    As huge as the Pantheon of Rome and as heavy as the Statue of Liberty, this magnificent instrument is so precisely built that its seventeen-foot mirror was hand-polished to a tolerance of 2/1,000,000 of an inch. The telescope's construction drove some to the brink of madness, made others fearful that mortals might glimpse heaven, and transfixed an entire nation. Ronald Florence weaves into his account of the creation of "the perfect machine" a stirring chronicle of the birth of Big Science and a poignant rendering of an America mired in the depression yet reaching for the stars.

Genes vs Cultures vs Consciousness: A Brief Story of Our Computational Minds


Andres Campero - 2019
    It touches on its evolutionary development, its algorithmic nature and its scientific history by bridging ideas across Neuroscience, Computer Science, Biotechnology, Evolutionary History, Cognitive Science, Political Philosophy, and Artificial Intelligence.Never before had there been nearly as many scientists, resources or productive research focused on these topics, and humanity has achieved some understanding and some clarification. With the speed of progress it is timely to communicate an overreaching perspective, this book puts an emphasis on conveying the essential questions and what we know about their answers in a simple, clear and exciting way.Humans, along with the first RNA molecules, the first life forms, the first brains, the first conscious animals, the first societies and the first artificial agents constitute an amazing and crucial development in a path of increasingly complex computational intelligence. And yet, we occupy a minuscule time period in the history of Earth, a history that has been written by Genes, by Cultures and by Consciousnesses. If we abandon our anthropomorphic bias it becomes obvious that Humans are not so special after all. We are an important but short and transitory step among many others in a bigger story. The story of our computational minds, which is ours but not only ours. What is the relationship between computation, cognition and everything else? What is life and how did it originate? What is the role of culture in human minds? What do we know about the algorithmic nature of the mind, can we engineer it? What is the computational explanation of consciousness? What are some possible future steps in the evolution of minds? The underlying thread is the computational nature of the Mind which results from the mixture of Genes, Cultures and Consciousness. While these three interact in complex ways, they are ultimately computational systems on their own which appeared at different stages of history and which follow their own selective processes operating at different time scales. As technology progresses, the distinction between the three components materializes and will be a key determinant of the future.Among the many topics covered are the origin of life, the concept of computation and its relation to Turing Machines, cultural evolution and the notion of a Selfish Meme, free will and determinism, moral relativity, the hard problem of consciousness, the different theories of concepts from the perspective of cognitive science, the current status of AI and Machine Learning including the symbolic vs sub-symbolic dichotomy, the contrast between logical reasoning and neural networks, and the recent history of Deep Learning, Geoffrey Hinton, DeepMind and its algorithm AlphaGo. It also develops on the history of science and looks into the possible future building on the work of authors like Daniel Dennett, Yuval Harari, Richard Dawkins, Francis Crick, George Church, David Chalmers, Susan Carey, Stanislas Dehaene, Robert Boyd, Joseph Henrich, Daniel Kahneman, Moran Cerf, Josh Tenenbaum, David Deutsch, Steven Pinker, Ray Kurzweil, John von Neumann, Herbert Simon and many more. Andres Campero is a researcher and PhD student at the Brain and Cognitive Sciences Department and at the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (MIT).