Book picks similar to
The Norton History of the Mathematical Sciences by Ivor Grattan-Guinness
mathematics
history
science
science-print
Order Out of Chaos: Man's New Dialogue with Nature
Ilya Prigogine - 1984
Stengers and Prigogine show how the two great themes of classic science, order and chaos, which coexisted uneasily for centuries, are being reconciled in a new and unexpected synthesis.
யூதர்கள்-வரலாறும் வாழ்க்கையும்
Mugil - 2007
Apart from their achievements, they have suffered all through the history right from the days of Moses till the Israel-Palestine issue. This book clearly brings out the life of jews and their battles, sufferings, customs, beliefs, strategies etc.
Introductory Linear Algebra: An Applied First Course
Bernard Kolman - 1988
Calculus is not a prerequisite, although examples and exercises using very basic calculus are included (labeled Calculus Required.) The most technology-friendly text on the market, Introductory Linear Algebra is also the most flexible. By omitting certain sections, instructors can cover the essentials of linear algebra (including eigenvalues and eigenvectors), to show how the computer is used, and to introduce applications of linear algebra in a one-semester course.
Essays on the Theory of Numbers
Richard Dedekind - 1901
W. R. Dedekind. The first presents Dedekind's theory of the irrational number-the Dedekind cut idea-perhaps the most famous of several such theories created in the 19th century to give a precise meaning to irrational numbers, which had been used on an intuitive basis since Greek times. This paper provided a purely arithmetic and perfectly rigorous foundation for the irrational numbers and thereby a rigorous meaning of continuity in analysis.The second essay is an attempt to give a logical basis for transfinite numbers and properties of the natural numbers. It examines the notion of natural numbers, the distinction between finite and transfinite (infinite) whole numbers, and the logical validity of the type of proof called mathematical or complete induction.The contents of these essays belong to the foundations of mathematics and will be welcomed by those who are prepared to look into the somewhat subtle meanings of the elements of our number system. As a major work of an important mathematician, the book deserves a place in the personal library of every practicing mathematician and every teacher and historian of mathematics. Authorized translations by "Vooster " V. Beman.
Advanced Engineering Mathematics
Dennis G. Zill - 1992
A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0
The Geometry of René Descartes: with a Facsimile of the First Edition
René Descartes - 1637
Originally published in 1637, it has been characterized as "the greatest single step ever made in the progress of the exact sciences" (John Stuart Mill); as a book which "remade geometry and made modern geometry possible" (Eric Temple Bell). It "revolutionized the entire conception of the object of mathematical science" (J. Hadamard).With this volume Descartes founded modern analytical geometry. Reducing geometry to algebra and analysis and, conversely, showing that analysis may be translated into geometry, it opened the way for modern mathematics. Descartes was the first to classify curves systematically and to demonstrate algebraic solution of geometric curves. His geometric interpretation of negative quantities led to later concepts of continuity and the theory of function. The third book contains important contributions to the theory of equations.This edition contains the entire definitive Smith-Latham translation of Descartes' three books: Problems the Construction of which Requires Only Straight Lines and Circles; On the Nature of Curved Lines; and On the Construction of Solid and Supersolid Problems. Interleaved page by page with the translation is a complete facsimile of the 1637 French text, together with all Descartes' original illustrations; 248 footnotes explain the text and add further bibliography.
The Measure of Reality: Quantification in Western Europe, 1250-1600
Alfred W. Crosby - 1988
More people in Western Europe thought quantitatively in the sixteenth century than in any other part of the world, enabling them to become the world's leaders. With amusing detail and historical anecdote, Alfred Crosby discusses the shift from qualitative to quantitative perception that occurred during the late Middle Ages and Renaissance. Alfred W. Crosby is the author of five books, including the award-winning Ecological Imperialism: The Biological Expansion of Europe, 900-1900 (Cambridge, 1986)
The History of Puerto Rico From the Spanish Discovery to the American Occupation
Rudolph Adams Van Middeldyk - 1975
The Dark Ages - Book II of III
Charles William Chadwick Oman - 2013
Names of Kings and major political/military persons have been updated and major typographical errors found with the previous Kindle edition have been corrected. Combined with copious illustrations, maps and images, the newly revised Dark Ages is essential reading for anyone seeking to understand a critical period in Western history that saw the transition from Roman Imperial rule to conquest-driven tribal rule and, ultimately, a flowering into the High Middle Ages. Oman provides one of the best historical examinations and explanations about the period widely known as the Dark Ages, when the end of total and complex Roman Imperial rule over Europe and the Mediterranean collapsed, taking the institutions that provided so much cultural sophistication and stability with it. The Dark Ages has been split into three books, mainly for ease of reading; the original book published in 1893 was a massive tome that covered the period from 476 CE to 918 CE. This second book in the new edition covers the period from 561 CE to 743 CE:THE SUCCESSORS OF JUSTINIAN 565-610DECLINE AND DECAY OF THE MEROVINGIANS 561-656THE LOMBARDS IN ITALY, AND THE RISE OF THE PAPACY 568-653HERACLIUS AND MOHAMMED 610-641THE DECLINE AND FALL OF THE VISIGOTHS A.D. 603-711THE CONTEST OF THE EASTERN EMPIRE AND THE CALIPHATE 641-717THE HISTORY OF THE GREAT MAYORS OF THE PALACE 656-720THE LOMBARDS AND THE PAPACY 653-743CHARLES MARTEL AND HIS WARS 720-741
Fractals
John P. Briggs - 1992
Describes how fractals were discovered, explains their unique properties, and discusses the mathematical foundation of fractals.
The Pea and the Sun: A Mathematical Paradox
Leonard M. Wapner - 2005
Would you believe that these five pieces can be reassembled in such a fashion so as to create two apples equal in shape and size to the original? Would you believe that you could make something as large as the sun by breaking a pea into a finite number of pieces and putting it back together again? Neither did Leonard Wapner, author of The Pea and the Sun, when he was first introduced to the Banach-Tarski paradox, which asserts exactly such a notion. Written in an engaging style, The Pea and the Sun catalogues the people, events, and mathematics that contributed to the discovery of Banach and Tarski's magical paradox. Wapner makes one of the most interesting problems of advanced mathematics accessible to the non-mathematician.
Worldviews: An Introduction to the History and Philosophy of Science
Richard DeWitt - 2004
Covers the key historical developments and philosophical themes and topics that have impacted upon our scientific view of the world around us Introduces fundamental conceptual issues, including truth, empirical facts and philosophical/conceptual "facts," falsifiability, and instrumentalism /realism Analyzes the transition from the Aristotelian worldview to the Newtonian worldview Explores challenges to our own western worldview brought on by developments in twentieth-century science, most notably relativity theory and quantum theory
Young Einstein: From the Doxerl Affair to the Miracle Year
L. Randles Lagerstrom - 2013
In 1905 an unknown 26-year-old clerk at the Swiss Patent Office, who had supposedly failed math in school, burst on to the scientific scene and swept away the hidebound theories of the day. The clerk, Albert Einstein, introduced a new and unexpected understanding of the universe and launched the two great revolutions of twentieth-century physics, relativity and quantum mechanics. The obscure origin and wide-ranging brilliance of the work recalled Isaac Newton’s “annus mirabilis” (miracle year) of 1666, when as a 23-year-old seeking safety at his family manor from an outbreak of the plague, he invented calculus and laid the foundations for his theory of gravity. Like Newton, Einstein quickly became a scientific icon--the image of genius and, according to Time magazine, the Person of the Century.The actual story is much more interesting. Einstein himself once remarked that “science as something coming into being ... is just as subjectively, psychologically conditioned as are all other human endeavors.” In this profile, the historian of science L. Randles Lagerstrom takes you behind the myth and into the very human life of the young Einstein. From family rifts and girlfriend troubles to financial hardships and jobless anxieties, Einstein’s early years were typical of many young persons. And yet in the midst of it all, he also saw his way through to profound scientific insights. Drawing upon correspondence from Einstein, his family, and his friends, Lagerstrom brings to life the young Einstein and enables the reader to come away with a fuller and more appreciative understanding of Einstein the person and the origins of his revolutionary ideas.About the cover image: While walking to work six days a week as a patent clerk in Bern, Switzerland, Einstein would pass by the famous "Zytglogge" tower and its astronomical clocks. The daily juxtaposition was fitting, as the relative nature of time and clock synchronization would be one of his revolutionary discoveries in the miracle year of 1905.
Pascal's Wager: The Man Who Played Dice with God
James A. Connor - 2006
A child prodigy, Pascal made essential additions to Descartes's work at age sixteen. By age nineteen, he had invented the world's first mechanical calculator. But despite his immense contributions to modern science and mathematical thinking, it is Pascal's wager with God that set him apart from his peers as a man fully engaged with both religious and scientific pursuits.One night in 1654, Pascal had a visit from God, a mystical experience that changed his life. Struggling to explain God's existence to others, Pascal dared to apply his mathematical work to religious faith, playing dice with divinity: he argued for the existence of God, basing his position not on rigorous logical principles as did Aquinas or Anselm of Canterbury, but on outcomes—his famous wager. By applying to the existence of God the same rules that governed the existence and position of the universe itself, Pascal sounded the death knell for medieval "certainties" and paved the way for modern thinking.
String, Straightedge, and Shadow: The Story of Geometry
Julia E. Diggins - 1965
Julia Diggins masterfully recreates the atmosphere of ancient times, when men, using three simple tools, the string, the straightedge, and the shadow, discovered the basic principles and constructions of elementary geometry. Her book reveals how these discoveries related to the early civilizations of Mesopotamia, Egypt, and Greece.The fabric of the story is woven out of archeological and historical records and legends about the major men of mathematics. By reconstructing the events as they might have happened, Diggins enables the attentive reader to easily follow the pattern of reasoning that leads to an ingenious proof of the Pythagorean theorem, an appreciation of the significance of the Golden Mean in art and architecture, and the construction of the five regular solids.Out of print for 34 years, Julia Diggins' classic book is back and is a must-read for middle school students or for parents helping their children through their first geometry course. You will be fascinated with the graphic illustrations and written depiction of how the knowledge and wisdom of so many cultures helped shape our civilization today. This book is popular with teachers and parents who use Jamie York's Making Math Meaningful curriculum books.