Learn R in a Day


Steven Murray - 2013
    The book assumes no prior knowledge of computer programming and progressively covers all the essential steps needed to become confident and proficient in using R within a day. Topics include how to input, manipulate, format, iterate (loop), query, perform basic statistics on, and plot data, via a step-by-step technique and demonstrations using in-built datasets which the reader is encouraged to replicate on their computer. Each chapter also includes exercises (with solutions) to practice key skills and empower the reader to build on the essentials gained during this introductory course.

DAX Formulas for PowerPivot: The Excel Pro's Guide to Mastering DAX


Rob Collie - 2012
    Written by the world’s foremost PowerPivot blogger and practitioner, the book’s concepts and approach are introduced in a simple, step-by-step manner tailored to the learning style of Excel users everywhere. The techniques presented allow users to produce, in hours or even minutes, results that formerly would have taken entire teams weeks or months to produce and include lessons on the difference between calculated columns and measures, how formulas can be reused across reports of completely different shapes, how to merge disjointed sets of data into unified reports, how to make certain columns in a pivot behave as if the pivot were filtered while other columns do not, and how to create time-intelligent calculations in pivot tables such as “Year over Year” and “Moving Averages” whether they use a standard, fiscal, or a complete custom calendar. The “pattern-like” techniques and best practices contained in this book have been developed and refined over two years of onsite training with Excel users around the world, and the key lessons from those seminars costing thousands of dollars per day are now available to within the pages of this easy-to-follow guide.

Microsoft Excel Data Analysis and Business Modeling


Wayne L. Winston - 2004
    For more than a decade, well-known consultant and business professor Wayne Winston has been teaching corporate clients and MBA students the most effective ways to use Microsoft Excel for data analysis, modeling, and decision making. Now this award-winning educator shares the best of his classroom experience in this practical, business-focused guide. Each chapter advances your data analysis and modeling expertise using real-world examples and learn-by-doing exercises. You also get all the book’s problem-and-solution files on CD—for all the practice you need to solve complex problems and work smarter with Excel.Learn how to solve real business problems with Excel!Create best, worst, and most-likely scenarios for sales Calculate how long it would take to recoup a project’s startup costs Plan personal finances, such as computing loan terms or saving for retirement Estimate a product’s demand curve Simulate stock performance over a year Determine which product mix will yield the greatest profits Interpret the effects of price and advertising on sales Assign a dollar value to customer loyalty Manage inventory and order quantities with precision Create customer service queues with short wait times Estimate the probabilities of equipment failure Model business uncertainties Get new perspectives on data with PivotTable dynamic views Help predict quarterly revenue, outcomes of sporting events, presidential elections, and more! On the CD:Practice files for all the book’s exercises Solutions for problem sets Fully searchable eBook A Note Regarding the CD or DVDThe print version of this book ships with a CD or DVD. For those customers purchasing one of the digital formats in which this book is available, we are pleased to offer the CD/DVD content as a free download via O'Reilly Media's Digital Distribution services. To download this content, please visit O'Reilly's web site, search for the title of this book to find its catalog page, and click on the link below the cover image (Examples, Companion Content, or Practice Files). Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

Data Warehousing


Reema Thareja - 2009
    It provides a thorough understanding of the fundamentals of Data Warehousing and aims to impart a sound knowledge to users for creating and managing a Data Warehouse.The book introduces the various features and architecture of a Data Warehouse followed by a detailed study of the Business Requirements and Dimensional Modelling. It goes on to discuss the components of a Data Warehouse and thereby leads up to the core area of the subject by providing a thorough understanding of the building and maintenance of a Data Warehouse. This is then followed up by an overview of planning and project management, testing and growth and then finishing with Data Warehouse solutions and the latest trends in this field. The book is finally rounded off with a broad overview of its related field of study, Data Mining. The text is ably supported by plenty of examples to illustrate concepts and contains several review questions and other end-chapter exercises to test the understanding of students. The book also carries a running case study that aims to bring out the practical aspects of the subject. This will be useful for students to master the basics and apply them to real-life scenario.

Doing Data Science


Cathy O'Neil - 2013
    But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Data Science with R


Garrett Grolemund - 2015
    

Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists


Philipp K. Janert - 2010
    With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora

Python for Everybody: Exploring Data in Python 3


Charles Severance - 2016
    You can think of the Python programming language as your tool to solve data problems that are beyond the capability of a spreadsheet.Python is an easy to use and easy to learn programming language that is freely available on Macintosh, Windows, or Linux computers. So once you learn Python you can use it for the rest of your career without needing to purchase any software.This book uses the Python 3 language. The earlier Python 2 version of this book is titled "Python for Informatics: Exploring Information".

Getting Started with SQL: A Hands-On Approach for Beginners


Thomas Nield - 2016
    If you're a business or IT professional, this short hands-on guide teaches you how to pull and transform data with SQL in significant ways. You will quickly master the fundamentals of SQL and learn how to create your own databases.Author Thomas Nield provides exercises throughout the book to help you practice your newfound SQL skills at home, without having to use a database server environment. Not only will you learn how to use key SQL statements to find and manipulate your data, but you'll also discover how to efficiently design and manage databases to meet your needs.You'll also learn how to:Explore relational databases, including lightweight and centralized modelsUse SQLite and SQLiteStudio to create lightweight databases in minutesQuery and transform data in meaningful ways by using SELECT, WHERE, GROUP BY, and ORDER BYJoin tables to get a more complete view of your business dataBuild your own tables and centralized databases by using normalized design principlesManage data by learning how to INSERT, DELETE, and UPDATE records

R for Data Science: Import, Tidy, Transform, Visualize, and Model Data


Hadley Wickham - 2016
    This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Tell Me The Odds: A 15 Page Introduction To Bayes Theorem


Scott Hartshorn - 2017
    Essentially, you make an initial guess, and then get more data to improve it. Bayes Theorem, or Bayes Rule, has a ton of real world applications, from estimating your risk of a heart attack to making recommendations on Netflix But It Isn't That Complicated This book is a short introduction to Bayes Theorem. It is only 15 pages long, and is intended to show you how Bayes Theorem works as quickly as possible. The examples are intentionally kept simple to focus solely on Bayes Theorem without requiring that the reader know complicated probability distributions. If you want to learn the basics of Bayes Theorem as quickly as possible, with some easy to duplicate examples, this is a good book for you.

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

The Ultimate All-New Kindle Paperwhite Guide Book (Your Complete Manual for the All-New Kindle Paperwhite E-reader)


Bohner, Carl - 2013
    

R for Everyone: Advanced Analytics and Graphics


Jared P. Lander - 2013
    R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you'll need to accomplish 80 percent of modern data tasks. Lander's self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You'll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you'll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you're done, you won't just know how to write R programs, you'll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES - Exploring R, RStudio, and R packages - Using R for math: variable types, vectors, calling functions, and more - Exploiting data structures, including data.frames, matrices, and lists - Creating attractive, intuitive statistical graphics - Writing user-defined functions - Controlling program flow with if, ifelse, and complex checks - Improving program efficiency with group manipulations - Combining and reshaping multiple datasets - Manipulating strings using R's facilities and regular expressions - Creating normal, binomial, and Poisson probability distributions - Programming basic statistics: mean, standard deviation, and t-tests - Building linear, generalized linear, and nonlinear models - Assessing the quality of models and variable selection - Preventing overfitting, using the Elastic Net and Bayesian methods - Analyzing univariate and multivariate time series data - Grouping data via K-means and hierarchical clustering - Preparing reports, slideshows, and web pages with knitr - Building reusable R packages with devtools and Rcpp - Getting involved with the R global community

Hitting Against the Spin: How Cricket Really Works


Nathan Leamon - 2021
    . . lifts the curtain to reveal the inner workings of international cricket. A must-read for any cricketer, coach or fan' Eoin Morgan'This path-breaking book should be compulsory reading for commentators and captains - and all cricket fans' Mervyn King'Clever and original but also wise' Ed SmithHow valuable is winning the toss? And how should captains use it to their advantage? Why does a cricket ball swing? Why don't Indians bat left-handed? What is a good length and why? Why are leg-spinners so successful in T20 cricket? Why did England win the World Cup? Why do all Test bowlers bowl at either 55 or 85mph? Why don't they pitch it up?All cricketers long to know the answer to these questions and many more. Only fifteen years ago it would have been difficult to answer them - cricket was guided only by decades-old tradition and received wisdom. Data has changed everything. Today we can track every ball to within millimetres; its release point, speed and bounce point are measured as are how much the ball swings, how much it deviates off the pitch, the exact height and line that it passes the stumps, and multiple other variables. Hitting Against the Spin is the story of that data, and what it can tell us about how cricket really works. Leading cricket thinkers Nathan Leamon and Ben Jones lift the lid on international cricket and explain its hidden workings and dynamics - the forces that shape cricket and, in turn, the cricketers who play it. They analyse the unseen hands that determine which players succeed and which fail, which tactics work and which don't, which teams win and which lose. They also explore the new world of franchise cricket as well as the rapid evolution of the T20 format. Revolutionary in its insights, Hitting Against the Spin takes you on a fascinating whistle-stop tour of modern cricket and sports analytics, bringing cricket firmly into the twenty-first century by revealing its long-kept secrets. This is the most important cricket book in decades.