Elements of Electromagnetics


Matthew N.O. Sadiku - 1993
    The book also provides a balanced presentation of time-varying and static fields, preparingstudents for employment in today's industrial and manufacturing sectors. Streamlined to facilitate student understanding, this edition features worked examples in every chapter that explain how to use the theory presented in the text to solve different kinds of problems. Numerical methods, including MATLAB and vector analysis, are also included to help students analyzesituations that they are likely to encounter in industry practice. Elements of Electromagnetics, Fifth Edition, is designed for introductory undergraduate courses in electromagnetics.

How to Make an Apple Pie from Scratch: In Search of the Recipe for Our Universe


Harry Cliff - 2021
    He ventures to the largest underground research facility in the world, deep beneath Italy's Gran Sasso mountains, where scientists gaze into the heart of the Sun using the most elusive of particles, the ghostly neutrino. He visits CERN in Switzerland to explore the Antimatter Factory, where the stuff of science fiction is manufactured daily (and we're close to knowing whether it falls up). And he reveals what the latest data from the Large Hadron Collider may be telling us about the fundamental nature of matter.Along the way, Cliff illuminates the history of physics, chemistry, and astronomy that brought us to our present understanding--and misunderstandings--of the world, while offering readers a front-row seat to one of the most dramatic intellectual journeys human beings have ever embarked on.A transfixing deep dive into origins of our world, How to Make an Apple Pie from Scratch examines not just the makeup of our universe, but the awe-inspiring, improbable fact that it exists at all.

13 Journeys Through Space and Time: Christmas Lectures from the Royal Institution


Colin Stuart - 2016
    With a foreword by ESA astronaut Tim Peake.Started at the Royal Institution (RI) in 1825 by Michael Faraday, the Christmas Lectures have been broadcast on television since the 1960s and have formed part of the British Christmas tradition for generations. First devised to attract young people to the magic of science through spectacular demonstrations, they are now watched by millions of people around the world every year.Drawing on the incredible archive at the RI, which is packed full of handwritten notebooks, photographs and transcripts, this book will focus on thirteen of the most captivating Lectures given at the RI on space and time, taking a look at what we thought we knew then and what has been discovered since.

First You Build a Cloud: And Other Reflections on Physics as a Way of Life


K.C. Cole - 1999
    In First You Build a Cloud, K. C. Cole provides cogent explanations through animated prose, metaphors, and anecdotes, allowing us to comprehend the nuances of physics-gravity and light, color and shape, quarks and quasars, particles and stars, force and strength. We also come to see how the physical world is so deeply intertwined with the ways in which we think about culture, poetry, and philosophy. Cole, one of our preeminent science writers, serves as a guide into the world of such legendary scientific minds as Richard Feynman, Victor Weisskopf, brothers Frank Oppenheimer and J. Robert Oppenheimer, Philip Morrison, Vera Kistiakowsky, and Stephen Jay Gould.

The Neural Correlates of Religious and Nonreligious Belief


Sam Harris - 2009
    Nor is it known whether religious believers and nonbelievers differ in how they evaluate statements of fact. Our lab previously has used functional neuroimaging to study belief as a general mode of cognition [1], and others have looked specifically at religious belief [2]. However, no research has compared these two states of mind directly.Methodology/Principal FindingsWe used functional magnetic resonance imaging (fMRI) to measure signal changes in the brains of thirty subjects—fifteen committed Christians and fifteen nonbelievers—as they evaluated the truth and falsity of religious and nonreligious propositions. For both groups, and in both categories of stimuli, belief (judgments of “true” vs judgments of “false”) was associated with greater signal in the ventromedial prefrontal cortex, an area important for self-representation [3], [4], [5], [6], emotional associations [7], reward [8], [9], [10], and goal-driven behavior [11]. This region showed greater signal whether subjects believed statements about God, the Virgin Birth, etc. or statements about ordinary facts. A comparison of both stimulus categories suggests that religious thinking is more associated with brain regions that govern emotion, self-representation, and cognitive conflict, while thinking about ordinary facts is more reliant upon memory retrieval networks.Conclusions/SignificanceWhile religious and nonreligious thinking differentially engage broad regions of the frontal, parietal, and medial temporal lobes, the difference between belief and disbelief appears to be content-independent. Our study compares religious thinking with ordinary cognition and, as such, constitutes a step toward developing a neuropsychology of religion. However, these findings may also further our understanding of how the brain accepts statements of all kinds to be valid descriptions of the world.Author ContributionsConceived and designed the experiments: Sam Harris, Jonas T. Kaplan, Marco Iacoboni, Mark S. Cohen. Performed the experiments: Jonas T. Kaplan. Analyzed the data: Sam Harris, Jonas T. Kaplan, Marco Iacoboni, Mark S. Cohen. Contributed reagents/materials/analysis tools: Marco Iacoboni, Mark S. Cohen. Wrote the paper: Sam Harris, Jonas T. Kaplan. Performed all subject recruitment, telephone screenings, and psychometric assessments prior to scanning: Ashley Curiel. Supervised our psychological assessment procedures and consulted on subject exclusions: Susan Y. Bookheimer. Gave extensive notes on the manuscript: Mark S. Cohen, Marco Iacoboni.

How It Began: A Time-Traveler's Guide to the Universe


Chris Impey - 2012
    Because it takes time for light to travel, we see more and more distant regions of the universe as they were in the successively greater past. Impey uses this concept—"look-back time"—to take us on an intergalactic tour that is simultaneously out in space and back in time. Performing a type of cosmic archaeology, Impey brilliantly describes the astronomical clues that scientists have used to solve fascinating mysteries about the origins and development of our universe.The milestones on this journey range from the nearby to the remote: we travel from the Moon, Jupiter, and the black hole at the heart of our galaxy all the way to the first star, the first ray of light, and even the strange, roiling conditions of the infant universe, an intense and volatile environment in which matter was created from pure energy. Impey gives us breathtaking visual descriptions and also explains what each landmark can reveal about the universe and its history. His lucid, wonderfully engaging scientific discussions bring us to the brink of modern cosmology and physics, illuminating such mind-bending concepts as invisible dimensions, timelessness, and multiple universes.A dynamic and unforgettable portrait of the cosmos, How It Began will reward its readers with a deeper understanding of the universe we inhabit as well as a renewed sense of wonder at its beauty and mystery.

Einstein's Miraculous Year


John J. Stachel - 1998
    In those twelve months, Einstein shattered many cherished scientific beliefs with five extraordinary papers that would establish him as the world's leading physicist. This book brings those papers together in an accessible format. The best-known papers are the two that founded special relativity: On the Electrodynamics of Moving Bodies and Does the Inertia of a Body Depend on Its Energy Content? In the former, Einstein showed that absolute time had to be replaced by a new absolute: the speed of light. In the second, he asserted the equivalence of mass and energy, which would lead to the famous formula E = mc2.The book also includes On a Heuristic Point of View Concerning the Production and Transformation of Light, in which Einstein challenged the wave theory of light, suggesting that light could also be regarded as a collection of particles. This helped to open the door to a whole new world--that of quantum physics. For ideas in this paper, he won the Nobel Prize in 1921.The fourth paper also led to a Nobel Prize, although for another scientist, Jean Perrin. On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat concerns the Brownian motion of such particles. With profound insight, Einstein blended ideas from kinetic theory and classical hydrodynamics to derive an equation for the mean free path of such particles as a function of the time, which Perrin confirmed experimentally. The fifth paper, A New Determination of Molecular Dimensions, was Einstein's doctoral dissertation, and remains among his most cited articles. It shows how to calculate Avogadro's number and the size of molecules.These papers, presented in a modern English translation, are essential reading for any physicist, mathematician, or astrophysicist. Far more than just a collection of scientific articles, this book presents work that is among the high points of human achievement and marks a watershed in the history of science. Coinciding with the 100th anniversary of the miraculous year, this new paperback edition includes an introduction by John Stachel, which focuses on the personal aspects of Einstein's youth that facilitated and led up to the miraculous year.

Introducing Time


Craig Callender - 1997
    Traces the history of time from Augustine's suggestion that there is no time, to the flowing time of Newton, the static time of Einstein, and then back, to the idea that there is no time in quantum gravity.

Astrology of the Seers


David Frawley - 1990
    It possesses a precise predictive value as well as a deep interpretation of the movement of life, unfolding the secrets of karma and destiny. Astrology of the Seers, first published in 1990, is regarded as one of the classic modern books on Vedic astrology, covering all the main aspects of its philosophy, background and practice. The present edition has been thoroughly revised and updated.

Lectures on Quantum Mechanics


Paul A.M. Dirac - 1964
    The remaining lectures build on that idea, examining the possibility of building a relativistic quantum theory on curved surfaces or flat surfaces.

فلسفة الكوانتم


Roland Omnès - 1994
    One of the world's leading quantum physicists, Omnes reviews the history and recent development of mathematics, logic, and the physical sciences to show that current work in quantum theory offers new answers to questions that have puzzled philosophers for centuries: Is the world ultimately intelligible? Are all events caused? Do objects have definitive locations? Omnes addresses these profound questions with vigorous arguments and clear, colorful writing, aiming not just to advance scholarship but to enlighten readers with no background in science or philosophy.

Navigating Genesis: A Scientist's Journey through Genesis 1-11


Hugh Ross - 2014
    When pushed for examples, skeptics point to the early part of Genesis, with stories of creation, the flood, and 900-year life spans as proof. Examining recent scientific discoveries, astronomer and pastor Dr. Hugh Ross explores the opening chapters in Genesis and shows how they hold some of the strongest scientific evidence for the Bible s supernatural accuracy. Navigating Genesis expands upon Ross earlier book The Genesis Question (1998), integrating the message of both the Bible and science without compromise giving skeptics and believers common ground for dialogue.

Tales of the Quantum: Understanding Physics' Most Fundamental Theory


Art Hobson - 2016
    But far more fundamentally, we live in a universe made of quanta. Many things are not made of atoms: light, radio waves, electric current, magnetic fields, Earth's gravitational field, not to mention exotica such a neutron stars, black holes, dark energy, and dark matter. But everything, including atoms, is made of highly unified or "coherent" bundles of energy called "quanta" that (like everything else) obey certain rules. In the case of the quantum, these rules are called "quantum physics." This is a book about quanta and their unexpected, some would say peculiar, behavior--tales, if you will, of the quantum.The quantum has developed the reputation of being capricious, bewildering, even impossible to understand. The peculiar habits of quanta are certainly not what we would have expected to find at the foundation of physical reality, but these habits are not necessarily bewildering and not at all impossible or paradoxical. This book explains those habits--the quantum rules--in everyday language, without mathematics or unnecessary technicalities. While most popular books about quantum physics follow the topic's scientific history from 1900 to today, this book follows the phenomena: wave-particle duality, fundamental randomness, quantum states, superpositions (being in two places at once), entanglement, non-locality, Schrodinger's cat, and quantum jumps, and presents the history and the scientists only to the extent that they illuminate the phenomena.

My Favorite Universe


Neil deGrasse Tyson - 2003
    Clear Science Teaching to Set the Stage for an Awe-Inspiring Course Created for a lay audience and readily accessible, in this course science always takes precedence over drama. The lectures are certainly entertaining, often funny, even awe-inspiring at times, as befits the subject matter. Even though you will be entertained, you will be learning good science. Clear introductions to essential principles of physics support these lectures, including density, quantum theory, gravity, and the General Theory of Relativity. Professor Neil deGrasse Tyson also includes forays into disciplines such as chemistry and biology as needed to explain events in astronomy. For example, Dr. Tyson begins one lecture at a point 13 billion years ago, when all space, matter, and energy in the known universe were contained in a volume less than one-trillionth the size of a pinpoint-about the size of a single atom. By the time he finishes, the cosmos has been stretched, the planets and our Earth formed, and 70 percent of existing Earth species have been wiped out by a gigantic asteroidclearing the way for the evolution of humanity. Along the way he has touched on Einstein's famous equation, E=mc2; on the four forces that were once unified in the early cosmos in a way physicists are still trying to explain; and on the chemical enrichment of the universe by exploding supernovae, which give the universe its necessary supply of heavier elements including oxygen, nitrogen, iron and, most important, carbon. Carbon, we learn, is a "sticky" atom, capable of making more kinds of molecules than all other elements combined. It's the ideal element with which to experiment in the building of life forms and is, of course, the element responsible for the remarkable diversity of life, including us. As Dr. Tyson notes, we are made of stardust, just as the planets are. And he has created a course that explains exactly how that came to be, beginning with a grounding in the basic "machinery" of matter, forces, and energy that has been discovered on Earth and which also reveals itself throughout the universe. The Stark and Violent Beauty of the Universe With this basic foundation in place, explanations of cosmic events fall logically into place, and the realities of the universe-including its eventual demise-are revealed in stark and often violent beauty. You learn: how Saturn's rings were formed, and why they will eventually be lost why low-density conditions are necessary to produce the drama of the northern and southern auroras why even the most jagged and wild of the Earth's mountain ranges are, from a cosmic standpoint, really part of a perfectly smooth sphere how black holes are formed and the extraordinary way in which they can wreak havoc in the universe how asteroids moving through space represent threats of extraordinary consequence to Earth, no matter how long those threats may take to be realized why the seemingly infinite panorama of celestial bodies revealed by the Hubble Space Telescope's famous "Deep Field" so intrigued astronomers how astronomers actually look for new planets, why the odds seem overwhelmingly in favor of some kind of life out there, whether we ever make contact or not. Most important, none of these ideas are presented as isolated "space factoids" that serve no purpose but to entertain. They are there to illustrate and reinforce the key principles of physics and astrophysics that are continually being presented in this course. But the inclusion of real science doesn't prevent Dr. Tyson from having some fun, either. When it's time to show how a black hole might remove one from the universe, he leads you right up to the "event horizon" and slips you in-feet first. Since the event horizon represents the point within which nothing, not even light, can escape, you might think this is a bad idea. And you would be right. But as you plummet toward the "singularity" at the heart of the black hole, you will learn firsthand about the interesting effects of gravity truly unleashed, including what physicists refer to, with a straight face, as "spaghettification." (Actually, Professor Tyson recommends that you be sucked in to a large black hole rather than a small one. You'll still be spaghettified, but it won't happen as quickly.) But make no mistake: Dr. Tyson does not consider the cosmos a laughing matter, this kind of whimsical touch notwithstanding. In spite of his training, he remains, admittedly, still in awe of his subject. And he has created a course that might well produce the same feeling in you.

Fundamentals of Physics: Mechanics, Relativity, and Thermodynamics


Ramamurti Shankar - 2014
    Shankar, a well-known physicist and contagiously enthusiastic educator, was among the first to offer a course through the innovative Open Yale Course program. His popular online video lectures on introductory physics have been viewed over a million times. In this concise and self-contained book based on his online Yale course, Shankar explains the fundamental concepts of physics from Galileo’s and Newton’s discoveries to the twentieth-century’s revolutionary ideas on relativity and quantum mechanics.   The book begins at the simplest level, develops the basics, and reinforces fundamentals, ensuring a solid foundation in the principles and methods of physics. It provides an ideal introduction for college-level students of physics, chemistry, and engineering, for motivated AP Physics students, and for general readers interested in advances in the sciences. Instructor resources--including problem sets and sample examinations--and more information about Professor Shankar's course are available at http://oyc.yale.edu/physics/phys-200.