Book picks similar to
Computer Systems Organization and Architecture by John D. Carpinelli
computer-science
john-d
tecnologia
computer-architecture
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
C# 4.0 in a Nutshell
Joseph Albahari - 2010
It is a book I recommend." --Scott Guthrie, Corporate Vice President, .NET Developer Platform, Microsoft Corporation
"A must-read for a concise but thorough examination of the parallel programming features in the .NET Framework 4." --Stephen Toub, Parallel Computing Platform Program Manager, Microsoft
"This wonderful book is a great reference for developers of all levels." -- Chris Burrows, C# Compiler Team, Microsoft
When you have questions about how to use C# 4.0 or the .NET CLR, this highly acclaimed bestseller has precisely the answers you need. Uniquely organized around concepts and use cases, this fourth edition includes in-depth coverage of new C# topics such as parallel programming, code contracts, dynamic programming, security, and COM interoperability. You'll also find updated information on LINQ, including examples that work with both LINQ to SQL and Entity Framework. This book has all the essential details to keep you on track with C# 4.0.
Get up to speed on C# language basics, including syntax, types, and variables Explore advanced topics such as unsafe code and preprocessor directives Learn C# 4.0 features such as dynamic binding, type parameter variance, and optional and named parameters Work with .NET 4's rich set of features for parallel programming, code contracts, and the code security model Learn .NET topics, including XML, collections, I/O and networking, memory management, reflection, attributes, security, and native interoperability
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Hello World: Being Human in the Age of Algorithms
Hannah Fry - 2018
It’s time we stand face-to-digital-face with the true powers and limitations of the algorithms that already automate important decisions in healthcare, transportation, crime, and commerce. Hello World is indispensable preparation for the moral quandaries of a world run by code, and with the unfailingly entertaining Hannah Fry as our guide, we’ll be discussing these issues long after the last page is turned.
Practical C Programming
Steve Oualline - 1992
Style and debugging also play a tremendous part in creating programs that run well and are easy to maintain. This book teaches you not only the mechanics of programming, but also describes how to create programs that are easy to read, debug, and update.Practical rules are stressed. For example, there are fifteen precedence rules in C (&& comes before || comes before ?:). The practical programmer reduces these to two: Multiplication and division come before addition and subtraction.Contrary to popular belief, most programmers do not spend most of their time creating code. Most of their time is spent modifying someone else's code. This books shows you how to avoid the all-too-common obfuscated uses of C (and also to recognize these uses when you encounter them in existing programs) and thereby to leave code that the programmer responsible for maintenance does not have to struggle with. Electronic Archaeology, the art of going through someone else's code, is described.This third edition introduces popular Integrated Development Environments on Windows systems, as well as UNIX programming utilities, and features a large statistics-generating program to pull together the concepts and features in the language.
AI Superpowers: China, Silicon Valley, and the New World Order
Kai-Fu Lee - 2018
Kai-Fu Lee—one of the world’s most respected experts on AI and China—reveals that China has suddenly caught up to the US at an astonishingly rapid and unexpected pace.In AI Superpowers, Kai-Fu Lee argues powerfully that because of these unprecedented developments in AI, dramatic changes will be happening much sooner than many of us expected. Indeed, as the US-Sino AI competition begins to heat up, Lee urges the US and China to both accept and to embrace the great responsibilities that come with significant technological power.Most experts already say that AI will have a devastating impact on blue-collar jobs. But Lee predicts that Chinese and American AI will have a strong impact on white-collar jobs as well. Is universal basic income the solution? In Lee’s opinion, probably not. But he provides a clear description of which jobs will be affected and how soon, which jobs can be enhanced with AI, and most importantly, how we can provide solutions to some of the most profound changes in human history that are coming soon.
Introducing Microsoft Power BI
Alberto Ferrari - 2016
Stay in the know, spot trends as they happen, and push your business to new limits. This e-book introduces Microsoft Power BI basics through a practical, scenario-based guided tour of the tool, showing you how to build analytical solutions using Power BI. Get an overview of Power BI, or dig deeper and follow along on your PC using the book's examples.
Cloud Computing: Concepts, Technology & Architecture
Thomas Erl - 2013
To successfully build upon, integrate with, or even create a cloud environment requires an understanding of its common inner mechanics, architectural layers, and models, as well as an understanding of the business and economic factors that result from the adoption and real-world use of cloud-based services.In Cloud Computing: Concepts, Technology & Architecture, Thomas Erl, one of the world's top-selling IT authors, teams up with cloud computing experts and researchers to break down proven and mature cloud computing technologies and practices into a series of well-defined concepts, models, technology mechanisms, and technology architectures, all from an industry-centric and vendor-neutral point of view. In doing so, the book establishes concrete, academic coverage with a focus on structure, clarity, and well-defined building blocks for mainstream cloud computing platforms and solutions.Subsequent to technology-centric coverage, the book proceeds to establish business-centric models and metrics that allow for the financial assessment of cloud-based IT resources and their comparison to those hosted on traditional IT enterprise premises. Also provided are templates and formulas for calculating SLA-related quality-of-service values and numerous explorations of the SaaS, PaaS, and IaaS delivery models.With more than 260 figures, 29 architectural models, and 20 mechanisms, this indispensable guide provides a comprehensive education of cloud computing essentials that will never leave your side.
In the Beginning...Was the Command Line
Neal Stephenson - 1999
And considering that the "one man" is Neal Stephenson, "the hacker Hemingway" (Newsweek) -- acclaimed novelist, pragmatist, seer, nerd-friendly philosopher, and nationally bestselling author of groundbreaking literary works (Snow Crash, Cryptonomicon, etc., etc.) -- the word is well worth hearing. Mostly well-reasoned examination and partial rant, Stephenson's In the Beginning... was the Command Line is a thoughtful, irreverent, hilarious treatise on the cyber-culture past and present; on operating system tyrannies and downloaded popular revolutions; on the Internet, Disney World, Big Bangs, not to mention the meaning of life itself.
Learning Ruby
Michael J. Fitzgerald - 2007
Written for both experienced and new programmers alike, Learning Ruby is a just-get-in-and-drive book -- a hands-on tutorial that offers lots of Ruby programs and lets you know how and why they work, just enough to get you rolling down the road. Interest in Ruby stems from the popularity of Rails, the web development framework that's attracting new devotees and refugees from Java and PHP. But there are plenty of other uses for this versatile language. The best way to learn is to just try the code! You'll find examples on nearly every page of this book that you can imitate and hack. Briefly, this book:Outlines many of the most important features of Ruby Demonstrates how to use conditionals, and how to manipulate strings in Ruby. Includes a section on regular expressions Describes how to use operators, basic math, functions from the Math module, rational numbers, etc. Talks you through Ruby arrays, and demonstrates hashes in detail Explains how to process files with Ruby Discusses Ruby classes and modules (mixins) in detail, including a brief introduction to object-oriented programming (OOP) Introduces processing XML, the Tk toolkit, RubyGems, reflection, RDoc, embedded Ruby, metaprogramming, exception handling, and other topics Acquaints you with some of the essentials of Rails, and includes a short Rails tutorial. Each chapter concludes with a set of review questions, and appendices provide you with a glossary of terms related to Ruby programming, plus reference material from the book in one convenient location. If you want to take Ruby out for a drive, Learning Ruby holds the keys.
Principles of Information Systems
Ralph M. Stair - 1992
The overall vision, framework, and pedagogy that made the previous editions so popular has been retained, making this a highly comprehensive IS text. Accomplished authors Ralph Stair and George Reynolds continue to expose their readers to clear learning objectives that are reinforced by timely, real-world business examples and hands-on activities. Regardless of their major, students can use this book to understand and practice fundamental IS principles so that they can function more efficiently and effectively as workers, managers, decision makers, and organizational leaders.
Code Complete
Steve McConnell - 1993
Now this classic book has been fully updated and revised with leading-edge practices--and hundreds of new code samples--illustrating the art and science of software construction. Capturing the body of knowledge available from research, academia, and everyday commercial practice, McConnell synthesizes the most effective techniques and must-know principles into clear, pragmatic guidance. No matter what your experience level, development environment, or project size, this book will inform and stimulate your thinking--and help you build the highest quality code. Discover the timeless techniques and strategies that help you: Design for minimum complexity and maximum creativity Reap the benefits of collaborative development Apply defensive programming techniques to reduce and flush out errors Exploit opportunities to refactor--or evolve--code, and do it safely Use construction practices that are right-weight for your project Debug problems quickly and effectively Resolve critical construction issues early and correctly Build quality into the beginning, middle, and end of your project