Book picks similar to
The Search for Mathematical Roots, 1870-1940: Logics, Set Theories and the Foundations of Mathematics from Cantor Through Russell to Gödel by Ivor Grattan-Guinness
mathematics
philosophy
science
mathphysics-histories
Entertaining Mathematical Puzzles
Martin Gardner - 1986
Puzzlists need only an elementary knowledge of math and a will to resist looking up the answer before trying to solve a problem.Written in a light and witty style, Entertaining Mathematical Puzzles is a mixture of old and new riddles, grouped into sections that cover a variety of mathematical topics: money, speed, plane and solid geometry, probability, topology, tricky puzzles, and more. The probability section, for example, points out that everything we do, everything that happens around us, obeys the laws of probability; geometry puzzles test our ability to think pictorially and often, in more than one dimension; while topology, among the "youngest and rowdiest branches of modern geometry," offers a glimpse into a strange dimension where properties remain unchanged, no matter how a figure is twisted, stretched, or compressed.Clear and concise comments at the beginning of each section explain the nature and importance of the math needed to solve each puzzle. A carefully explained solution follows each problem. In many cases, all that is needed to solve a puzzle is the ability to think logically and clearly, to be "on the alert for surprising, off-beat angles...that strange hidden factor that everyone else had overlooked."Fully illustrated, this engaging collection will appeal to parents and children, amateur mathematicians, scientists, and students alike, and may, as the author writes, make the reader "want to study the subject in earnest" and explains "some of the inviting paths that wind away from the problems into lusher areas of the mathematical jungle." 65 black-and-white illustrations.
Probability Theory: The Logic of Science
E.T. Jaynes - 1999
It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.
Incompleteness: The Proof and Paradox of Kurt Gödel
Rebecca Goldstein - 2005
"A gem…An unforgettable account of one of the great moments in the history of human thought." —Steven PinkerProbing the life and work of Kurt Gödel, Incompleteness indelibly portrays the tortured genius whose vision rocked the stability of mathematical reasoning—and brought him to the edge of madness.
Introduction to Logic
Irving M. Copi - 1953
Many new exercises introduced in this edition help supplement and support explanations, aid in review, and make the book visually stimulating. This edition also includes a revised Logic tutorial on CD-Rom--further simplifying the study of logic. Includes many fascinating illustrations taken from the history of science as well as from contemporary research in the physical and biological sciences, plus introduces an abundance of new exercises throughout, complete with solutions for the first exercise in a set. Appropriate for those in business, education, political, or psychology careers.
The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics
Karl Sabbagh - 2002
They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995.In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities.Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.
Essays on the Theory of Numbers
Richard Dedekind - 1901
W. R. Dedekind. The first presents Dedekind's theory of the irrational number-the Dedekind cut idea-perhaps the most famous of several such theories created in the 19th century to give a precise meaning to irrational numbers, which had been used on an intuitive basis since Greek times. This paper provided a purely arithmetic and perfectly rigorous foundation for the irrational numbers and thereby a rigorous meaning of continuity in analysis.The second essay is an attempt to give a logical basis for transfinite numbers and properties of the natural numbers. It examines the notion of natural numbers, the distinction between finite and transfinite (infinite) whole numbers, and the logical validity of the type of proof called mathematical or complete induction.The contents of these essays belong to the foundations of mathematics and will be welcomed by those who are prepared to look into the somewhat subtle meanings of the elements of our number system. As a major work of an important mathematician, the book deserves a place in the personal library of every practicing mathematician and every teacher and historian of mathematics. Authorized translations by "Vooster " V. Beman.
Infinitesimal: How a Dangerous Mathematical Theory Shaped the Modern World
Amir Alexander - 2014
With the stroke of a pen the Jesuit fathers banned the doctrine of infinitesimals, announcing that it could never be taught or even mentioned. The concept was deemed dangerous and subversive, a threat to the belief that the world was an orderly place, governed by a strict and unchanging set of rules. If infinitesimals were ever accepted, the Jesuits feared, the entire world would be plunged into chaos.In Infinitesimal, the award-winning historian Amir Alexander exposes the deep-seated reasons behind the rulings of the Jesuits and shows how the doctrine persisted, becoming the foundation of calculus and much of modern mathematics and technology. Indeed, not everyone agreed with the Jesuits. Philosophers, scientists, and mathematicians across Europe embraced infinitesimals as the key to scientific progress, freedom of thought, and a more tolerant society. As Alexander reveals, it wasn't long before the two camps set off on a war that pitted Europe's forces of hierarchy and order against those of pluralism and change.The story takes us from the bloody battlefields of Europe's religious wars and the English Civil War and into the lives of the greatest mathematicians and philosophers of the day, including Galileo and Isaac Newton, Cardinal Bellarmine and Thomas Hobbes, and Christopher Clavius and John Wallis. In Italy, the defeat of the infinitely small signaled an end to that land's reign as the cultural heart of Europe, and in England, the triumph of infinitesimals helped launch the island nation on a course that would make it the world's first modern state.From the imperial cities of Germany to the green hills of Surrey, from the papal palace in Rome to the halls of the Royal Society of London, Alexander demonstrates how a disagreement over a mathematical concept became a contest over the heavens and the earth. The legitimacy of popes and kings, as well as our beliefs in human liberty and progressive science, were at stake-the soul of the modern world hinged on the infinitesimal.
The Universal Computer: The Road from Leibniz to Turing
Martin D. Davis - 2000
How can today's computers perform such a bewildering variety of tasks if computing is just glorified arithmetic? The answer, as Martin Davis lucidly illustrates, lies in the fact that computers are essentially engines of logic. Their hardware and software embody concepts developed over centuries by logicians such as Leibniz, Boole, and Godel, culminating in the amazing insights of Alan Turing. The Universal Computer traces the development of these concepts by exploring with captivating detail the lives and work of the geniuses who first formulated them. Readers will come away with a revelatory understanding of how and why computers work and how the algorithms within them came to be.
Adventures of a Computational Explorer
Stephen Wolfram - 2019
In this lively book of essays, Stephen Wolfram takes the reader along on some of his most surprising and engaging intellectual adventures in science, technology, artificial intelligence and language design.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
An Introduction to Mathematics
Alfred North Whitehead - 1958
This distinguished little book is a brisk introduction to a series of mathematical concepts, a history of their development, and a concise summary of how today's reader may use them.
Thinking In Numbers: On Life, Love, Meaning, and Math
Daniel Tammet - 2012
In Tammet's world, numbers are beautiful and mathematics illuminates our lives and minds. Using anecdotes, everyday examples, and ruminations on history, literature, and more, Tammet allows us to share his unique insights and delight in the way numbers, fractions, and equations underpin all our lives. Inspired by the complexity of snowflakes, Anne Boleyn's eleven fingers, or his many siblings, Tammet explores questions such as why time seems to speed up as we age, whether there is such a thing as an average person, and how we can make sense of those we love. Thinking In Numbers will change the way you think about math and fire your imagination to see the world with fresh eyes.
Meta Math!: The Quest for Omega
Gregory Chaitin - 2005
His investigations shed light on what we can ultimately know about the universe and the very nature of life. In an infectious and enthusiastic narrative, Chaitin delineates the specific intellectual and intuitive steps he took toward the discovery. He takes us to the very frontiers of scientific thinking, and helps us to appreciate the art—and the sheer beauty—in the science of math.
Introduction to Logic
Harry J. Gensler - 2001
Harry Gensler engages students with the basics of logic through practical examples and important arguments both in the history of philosophy and from contemporary philosophy. Using simple and manageable methods for testing arguments, students are led step-by-step to master the complexities of logic.The companion LogiCola instructional program and various teaching aids (including a teacher's manual) are available from the book's website: www.routledge.com/textbooks/gensler_l...