Book picks similar to
Mathematical Techniques in Multisensor Data Fusion by David L. Hall
computer-science
csc-machine-learning
mat-algebraic-topology
mat-dynamical-systems
Starting Out with Java: From Control Structures Through Objects
Tony Gaddis - 2009
If you wouldlike to purchase both the physical text and MyProgrammingLab search for ISBN-10: 0132989999/ISBN-13: 9780132989992. That packageincludes ISBN-10: 0132855836/ISBN-13: 9780132855839 and ISBN-10: 0132891557/ISBN-13: 9780132891554. MyProgrammingLab should only be purchased when required by an instructor. In "Starting Out with Java: From Control Structures through Objects", Gaddis covers procedural programming control structures and methods before introducing object-oriented programming. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, and an abundance of exercises appear in every chapter. "
Guide to Computer Forensics and Investigations (Book & CD)
Bill Nelson - 2003
This resource guides readers through conducting a high-tech investigation, from acquiring digital evidence to reporting its findings. Updated coverage includes new software and technologies as well as up-to-date reference sections, and content includes how to set up a forensics lab, how to acquire the proper and necessary tools, and how to conduct the investigation and subsequent digital analysis. It is appropriate for students new to the field, or as a refresher and technology update for professionals in law enforcement, investigations, or computer security. The book features free downloads of the latest forensic software, so readers can become familiar with the tools of the trade.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Advanced Engineering Mathematics
K.A. Stroud - 2003
You proceed at your own rate and any difficulties you may encounter are resolved before you move on to the next topic. With a step-by-step programmed approach that is complemented by hundreds of worked examples and exercises, Advanced Engineering Mathematics is ideal as an on-the-job reference for professionals or as a self-study guide for students.Uses a unique technique-oriented approach that takes the reader through each topic step-by-step.Features a wealth of worked examples and progressively more challenging exercises.Contains Test Exercises, Learning Outcomes, Further Problems, and Can You? Checklists to guide and enhance learning and comprehension.Expanded coverage includes new chapters on Z Transforms, Fourier Transforms, Numerical Solutions of Partial Differential Equations, and more Complex Numbers.Includes a new chapter, Introduction to Invariant Linear Systems, and new material on difference equations integrated into the Z transforms chapter.
Show Me the Numbers: Designing Tables and Graphs to Enlighten
Stephen Few - 2004
Information is provided on the fundamental concepts of table and graph design, the numbers and knowledge most suitable for display in a graphic form, the best tabular means to communicate certain ideas, and the component-level aspects of design. Analysts, technicians, and managers will appreciate the solid theory behind this outline for ensuring that tables and graphs present quantitative business information in a truthful, attractive format that facilitates better decision making.
An Introduction to Genetic Algorithms
Melanie Mitchell - 1996
This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Cambridge International AS and A Level Biology Coursebook with CD-ROM (Cambridge International Examin)
Mary Jones - 2012
The experienced author team have reviewed the core text, expanded the Applications of Biology chapters, and added two new chapters on practical skills. Each chapter now has a set of exam-style practice questions, as well as questions to help review the material. Also included are advice on how to revise and prepare for the examinations, multiple choice questions, revision summaries and answers to all book questions.
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Elementary Statistics: Picturing the World
Ron Larson - 2002
Offering an approach with a visual/graphical emphasis, this text offers a number of examples on the premise that students learn best by doing. This book features an emphasis on interpretation of results and critical thinking over calculations.
Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers
Rudra Pratap - 2005
Its broad appeal lies in its interactive environment with hundreds of built-in functions for technical computation, graphics, and animation. In addition, it provides easy extensibility with its own high-level programming language. Enhanced by fun and appealing illustrations, Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers employs a casual, accessible writing style that shows users how to enjoy using MATLAB.
Absolute Java
Walter J. Savitch - 2003
Praised for providing an engaging balance of thoughtful examples and explanatory discussion, ?best-selling author Walter Savitch explains concepts and techniques in a straightforward style using understandable language and code enhanced by a suite of pedagogical tools.? "Absolute Java "is appropriate for both introductory and intermediate programming courses introducing Java.
An Introduction to Project Management
Kathy Schwalbe - 2006
This book provides up-to-date information on how good project, program, and portfolio management can help you achieve organizational success. It includes over 50 samples of tools and techniques applied to one large project, and is suitable for all majors, including business, engineering, healthcare, and more.
A Primer of Ecological Statistics
Nicholas J. Gotelli - 2004
The book emphasizes a general introduction to probability theory and provides a detailed discussion of specific designs and analyses that are typically encountered in ecology and environmental science. Appropriate for use as either a stand-alone or supplementary text for upper-division undergraduate or graduate courses in ecological and environmental statistics, ecology, environmental science, environmental studies, or experimental design, the Primer also serves as a resource for environmental professionals who need to use and interpret statistics daily but have little or no formal training in the subject.