Book picks similar to
High Performance Python: Practical Performant Programming for Humans by Micha Gorelick
python
programming
computer-science
tech
Python Testing with Pytest: Simple, Rapid, Effective, and Scalable
Brian Okken - 2017
The pytest testing framework helps you write tests quickly and keep them readable and maintainable - with no boilerplate code. Using a robust yet simple fixture model, it's just as easy to write small tests with pytest as it is to scale up to complex functional testing for applications, packages, and libraries. This book shows you how.For Python-based projects, pytest is the undeniable choice to test your code if you're looking for a full-featured, API-independent, flexible, and extensible testing framework. With a full-bodied fixture model that is unmatched in any other tool, the pytest framework gives you powerful features such as assert rewriting and plug-in capability - with no boilerplate code.With simple step-by-step instructions and sample code, this book gets you up to speed quickly on this easy-to-learn and robust tool. Write short, maintainable tests that elegantly express what you're testing. Add powerful testing features and still speed up test times by distributing tests across multiple processors and running tests in parallel. Use the built-in assert statements to reduce false test failures by separating setup and test failures. Test error conditions and corner cases with expected exception testing, and use one test to run many test cases with parameterized testing. Extend pytest with plugins, connect it to continuous integration systems, and use it in tandem with tox, mock, coverage, unittest, and doctest.Write simple, maintainable tests that elegantly express what you're testing and why.What You Need: The examples in this book are written using Python 3.6 and pytest 3.0. However, pytest 3.0 supports Python 2.6, 2.7, and Python 3.3-3.6.
Python Crash Course: A Hands-On, Project-Based Introduction to Programming
Eric Matthes - 2015
You'll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you'll put your new knowledge into practice with three substantial projects: a Space Invaders-inspired arcade game, data visualizations with Python's super-handy libraries, and a simple web app you can deploy online.As you work through Python Crash Course, you'll learn how to: Use powerful Python libraries and tools, including matplotlib, NumPy, and PygalMake 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progressesWork with data to generate interactive visualizationsCreate and customize simple web apps and deploy them safely onlineDeal with mistakes and errors so you can solve your own programming problemsIf you've been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code!
Hands-On Machine Learning with Scikit-Learn and TensorFlow
Aurélien Géron - 2017
Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Machine Learning: The Art and Science of Algorithms That Make Sense of Data
Peter Flach - 2012
Peter Flach's clear, example-based approach begins by discussing how a spam filter works, which gives an immediate introduction to machine learning in action, with a minimum of technical fuss. Flach provides case studies of increasing complexity and variety with well-chosen examples and illustrations throughout. He covers a wide range of logical, geometric and statistical models and state-of-the-art topics such as matrix factorisation and ROC analysis. Particular attention is paid to the central role played by features. The use of established terminology is balanced with the introduction of new and useful concepts, and summaries of relevant background material are provided with pointers for revision if necessary. These features ensure Machine Learning will set a new standard as an introductory textbook.
The Art of SQL
Stephane Faroult - 2006
Database performance has become a major headache, and most IT departments believe that developers should provide simple SQL code to solve immediate problems and let DBAs tune any bad SQL later.In The Art of SQL, author and SQL expert Stephane Faroult argues that this safe approach only leads to disaster. His insightful book, named after Art of War by Sun Tzu, contends that writing quick inefficient code is sweeping the dirt under the rug. SQL code may run for 5 to 10 years, surviving several major releases of the database management system and on several generations of hardware. The code must be fast and sound from the start, and that requires a firm understanding of SQL and relational theory.The Art of SQL offers best practices that teach experienced SQL users to focus on strategy rather than specifics. Faroult's approach takes a page from Sun Tzu's classic treatise by viewing database design as a military campaign. You need knowledge, skills, and talent. Talent can't be taught, but every strategist from Sun Tzu to modern-day generals believed that it can be nurtured through the experience of others. They passed on their experience acquired in the field through basic principles that served as guiding stars amid the sound and fury of battle. This is what Faroult does with SQL.Like a successful battle plan, good architectural choices are based on contingencies. What if the volume of this or that table increases unexpectedly? What if, following a merger, the number of users doubles? What if you want to keep several years of data online? Faroult's way of looking at SQL performance may be unconventional and unique, but he's deadly serious about writing good SQL and using SQL well. The Art of SQL is not a cookbook, listing problems and giving recipes. The aim is to get you-and your manager-to raise good questions.
The Quick Python Book
Naomi R. Ceder - 2000
This updated edition includes all the changes in Python 3, itself a significant shift from earlier versions of Python.The book begins with basic but useful programs that teach the core features of syntax, control flow, and data structures. It then moves to larger applications involving code management, object-oriented programming, web development, and converting code from earlier versions of Python.True to his audience of experienced developers, the author covers common programming language features concisely, while giving more detail to those features unique to Python.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Programming in Python 3: A Complete Introduction to the Python Language
Mark Summerfield - 2008
It brings together all the knowledge needed to write any program, use any standard or third-party Python 3 library, and create new library modules of your own.
The Linux Command Line
William E. Shotts Jr. - 2012
Available here:readmeaway.com/download?i=1593279523The Linux Command Line, 2nd Edition: A Complete Introduction PDF by William ShottsRead The Linux Command Line, 2nd Edition: A Complete Introduction PDF from No Starch Press,William ShottsDownload William Shotts’s PDF E-book The Linux Command Line, 2nd Edition: A Complete Introduction
Mastering Algorithms with C
Kyle Loudon - 1999
Mastering Algorithms with C offers you a unique combination of theoretical background and working code. With robust solutions for everyday programming tasks, this book avoids the abstract style of most classic data structures and algorithms texts, but still provides all of the information you need to understand the purpose and use of common programming techniques.Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.Contents include:PointersRecursionAnalysis of algorithmsData structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)Sorting and searchingNumerical methodsData compressionData encryptionGraph algorithmsGeometric algorithms
Python in a Nutshell
Alex Martelli - 2003
Demonstrates the programming language's strength as a Web development tool, covering syntax, data types, built-ins, the Python standard module library, and real world examples
Assembly Language: Step-By-Step
Jeff Duntemann - 1992
It then builds systematically to cover all the steps involved in writing, testing, and debugging assembly programs. It also provides valuable how-to information on using procedures and macros. The only guide to assembly programming covering both DOS and Linux, the book presents working example programs for both operating system, and introduces Conditional Assembly -- a technique for assembling for both DOS and Linux systems from a single source file.
Two Scoops of Django: Best Practices for Django 1.5
Daniel Roy Greenfeld - 2013
We'll introduce you to various tips, tricks, patterns, code snippets, and techniques that we've picked up over the years.This book is great for:Beginners who have just finished the Django tutorial.Developers with intermediate knowledge of Django who want to improve their Django projects.
Java in a Nutshell
David Flanagan - 1996
And now, with the release of the 5.0 version of Java, O'Reilly has given the book that defined the "in a Nutshell" category another impressive tune-up.In this latest revision, readers will find "Java in a Nutshell," 5th Edition, does more than just cover the extensive changes implicit in 5.0, the newest version of Java. It's undergone a complete makeover--in scope, size, and type of coverage--in order to more closely meet the needs of the modern Java programmer.To wit, "Java in a Nutshell," 5th Edition now places less emphasis on coming to Java from C and C++, and adds more discussion on tools and frameworks. It also offers new code examples to illustrate the working of APIs, and, of course, extensive coverage of Java 5.0. But faithful readers take comfort: it still hasn't lost any of its core elements that made it such a classic to begin with.This handy reference gets right to the heart of the program with an accelerated introduction to the Javaprogramming language and its key APIs--ideal for developers wishing to start writing code right away. And, as was the case in previous editions, " Java in a Nutshell," 5th Edition is once again chock-full of poignant tips, techniques, examples, and practical advice. For as longas Java has existed, "Java in a Nutshell" has helped developers maximize the capabilities of the program's newest versions. And this latest edition is no different.