Book picks similar to
Evaluating Machine Learning Models by Alice Zheng


data-science
machine-learning
computer-science
nonfiction

Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy


Cathy O'Neil - 2016
    Increasingly, the decisions that affect our lives--where we go to school, whether we can get a job or a loan, how much we pay for health insurance--are being made not by humans, but by machines. In theory, this should lead to greater fairness: Everyone is judged according to the same rules.But as mathematician and data scientist Cathy O'Neil reveals, the mathematical models being used today are unregulated and uncontestable, even when they're wrong. Most troubling, they reinforce discrimination--propping up the lucky, punishing the downtrodden, and undermining our democracy in the process.

Introducing Windows Server 2012


Mitch Tulloch - 2012
    This practical introduction illuminates new features and capabilities, with scenarios demonstrating how the platform can meet the needs of your business.Based on beta software, this book provides the early, high-level information you need to begin preparing now for deployment and management. Topics include:Virtualization and cloud solutions Availability Provisioning and storage management Security and scalability Infrastructure options Server administration

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Artificial Intelligence and Machine Learning for Business: A No-Nonsense Guide to Data Driven Technologies


Steven Finlay - 2021
    They are being applied across many industries to increase profits, reduce costs, save lives and improve customer experiences. Consequently, organizations that understand these tools and know how to use them are benefiting at the expense of their rivals.Artificial Intelligence and Machine Learning for Business cuts through the hype and technical jargon that is often associated with these subjects. It delivers a simple and concise introduction for managers and business people. The focus is on practical application and how to work with technical specialists (data scientists) to maximize the benefits of these technologies.This revised and fully updated edition contains several new sections and chapters, covering a broader set of topics than before, but retains the no-nonsense style of the original.Steven Finlay is a data scientist and author with more than 20 years’ experience of developing practical, business focused, analytical solutions. He holds a PhD in management science and is an honorary research fellow at Lancaster University in the UK.

Genius Makers: The Mavericks Who Brought AI to Google, Facebook, and the World


Cade Metz - 2021
    Through the lives of Geoff Hinton and other major players, Metz explains this transformative technology and makes the quest thrilling.--Walter Isaacson, author of The Code Breaker Recipient of starred reviews in both Kirkus and Library JournalTHE UNTOLD TECH STORY OF OUR TIMEWhat does it mean to be smart? To be human? What do we really want from life and the intelligence we have, or might create?With deep and exclusive reporting, across hundreds of interviews, New York Times Silicon Valley journalist Cade Metz brings you into the rooms where these questions are being answered. Where an extraordinarily powerful new artificial intelligence has been built into our biggest companies, our social discourse, and our daily lives, with few of us even noticing.Long dismissed as a technology of the distant future, artificial intelligence was a project consigned to the fringes of the scientific community. Then two researchers changed everything. One was a sixty-four-year-old computer science professor who didn't drive and didn't fly because he could no longer sit down--but still made his way across North America for the moment that would define a new age of technology. The other was a thirty-six-year-old neuroscientist and chess prodigy who laid claim to being the greatest game player of all time before vowing to build a machine that could do anything the human brain could do.They took two very different paths to that lofty goal, and they disagreed on how quickly it would arrive. But both were soon drawn into the heart of the tech industry. Their ideas drove a new kind of arms race, spanning Google, Microsoft, Facebook, and OpenAI, a new lab founded by Silicon Valley kingpin Elon Musk. But some believed that China would beat them all to the finish line.Genius Makers dramatically presents the fierce conflict between national interests, shareholder value, the pursuit of scientific knowledge, and the very human concerns about privacy, security, bias, and prejudice. Like a great Victorian novel, this world of eccentric, brilliant, often unimaginably yet suddenly wealthy characters draws you into the most profound moral questions we can ask. And like a great mystery, it presents the story and facts that lead to a core, vital question:How far will we let it go?

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

The Game Maker's Apprentice: Game Development for Beginners


Jacob Habgood - 2006
    This book covers a range of genres, including action, adventure, and puzzle games complete with professional quality sound effects and visuals. It discusses game design theory and features practical examples of how this can be applied to making games that are more fun to play. Game Maker allows games to be created using a simple drag-and-drop interface, so you don't need to have any prior coding experience. It includes an optional programming language for adding advanced features to your games, when you feel ready to do so. You can obtain more information by visiting book.gamemaker.nl. The authors include the creator of the Game Maker tool and a former professional game programmer, so you'll glean understanding from their expertise. The book also includes a DVD containing Game Maker software and all of the game projects that are created in the book—plus a host of professional-quality graphics and sound effects that you can use in your own games.

The Model Thinker: What You Need to Know to Make Data Work for You


Scott E. Page - 2018
    But as anyone who has ever opened up a spreadsheet packed with seemingly infinite lines of data knows, numbers aren't enough: we need to know how to make those numbers talk. In The Model Thinker, social scientist Scott E. Page shows us the mathematical, statistical, and computational models—from linear regression to random walks and far beyond—that can turn anyone into a genius. At the core of the book is Page's "many-model paradigm," which shows the reader how to apply multiple models to organize the data, leading to wiser choices, more accurate predictions, and more robust designs. The Model Thinker provides a toolkit for business people, students, scientists, pollsters, and bloggers to make them better, clearer thinkers, able to leverage data and information to their advantage.

Smart Machines: IBM's Watson and the Era of Cognitive Computing


John E. Kelly III - 2013
    The victory of IBM's Watson on the television quiz show Jeopardy! revealed how scientists and engineers at IBM and elsewhere are pushing the boundaries of science and technology to create machines that sense, learn, reason, and interact with people in new ways to provide insight and advice.In Smart Machines, John E. Kelly III, director of IBM Research, and Steve Hamm, a writer at IBM and a former business and technology journalist, introduce the fascinating world of "cognitive systems" to general audiences and provide a window into the future of computing. Cognitive systems promise to penetrate complexity and assist people and organizations in better decision making. They can help doctors evaluate and treat patients, augment the ways we see, anticipate major weather events, and contribute to smarter urban planning. Kelly and Hamm's comprehensive perspective describes this technology inside and out and explains how it will help us conquer the harnessing and understanding of "big data," one of the major computing challenges facing businesses and governments in the coming decades. Absorbing and impassioned, their book will inspire governments, academics, and the global tech industry to work together to power this exciting wave in innovation.

Bayes Theorem Examples: An Intuitive Guide


Scott Hartshorn - 2016
    Essentially, you are estimating a probability, but then updating that estimate based on other things that you know. This book is designed to give you an intuitive understanding of how to use Bayes Theorem. It starts with the definition of what Bayes Theorem is, but the focus of the book is on providing examples that you can follow and duplicate. Most of the examples are calculated in Excel, which is useful for updating probability if you have dozens or hundreds of data points to roll in.

Machine Learning


Ethem Alpaydin - 2016
    It is the basis for a new approach to artificial intelligence that aims to program computers to use example data or past experience to solve a given problem. In this volume in the MIT Press Essential Knowledge series, Ethem Alpayd�n offers a concise and accessible overview of the new AI. This expanded edition offers new material on such challenges facing machine learning as privacy, security, accountability, and bias. Alpayd�n, author of a popular textbook on machine learning, explains that as Big Data has gotten bigger, the theory of machine learning--the foundation of efforts to process that data into knowledge--has also advanced. He describes the evolution of the field, explains important learning algorithms, and presents example applications. He discusses the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances; and reinforcement learning, when an autonomous agent learns to take actions to maximize reward. In a new chapter, he considers transparency, explainability, and fairness, and the ethical and legal implications of making decisions based on data.

Introducing Microsoft Power BI


Alberto Ferrari - 2016
    Stay in the know, spot trends as they happen, and push your business to new limits. This e-book introduces Microsoft Power BI basics through a practical, scenario-based guided tour of the tool, showing you how to build analytical solutions using Power BI. Get an overview of Power BI, or dig deeper and follow along on your PC using the book's examples.

What's New in Java 7?


Madhusudhan Konda - 2011
    Madhusudhan Konda provides an overview of these, including strings in switch statements, multi-catch exception handling, try-with-resource statements, the new File System API, extensions of the JVM, support for dynamically-typed languages, and the fork and join framework for task parallelism.

Machine Learning for Dummies


John Paul Mueller - 2016
    Without machine learning, fraud detection, web search results, real-time ads on web pages, credit scoring, automation, and email spam filtering wouldn't be possible, and this is only showcasing just a few of its capabilities. Written by two data science experts, Machine Learning For Dummies offers a much-needed entry point for anyone looking to use machine learning to accomplish practical tasks.Covering the entry-level topics needed to get you familiar with the basic concepts of machine learning, this guide quickly helps you make sense of the programming languages and tools you need to turn machine learning-based tasks into a reality. Whether you're maddened by the math behind machine learning, apprehensive about AI, perplexed by preprocessing data--or anything in between--this guide makes it easier to understand and implement machine learning seamlessly.Grasp how day-to-day activities are powered by machine learning Learn to 'speak' certain languages, such as Python and R, to teach machines to perform pattern-oriented tasks and data analysis Learn to code in R using R Studio Find out how to code in Python using Anaconda Dive into this complete beginner's guide so you are armed with all you need to know about machine learning!

Machine Learning


Tom M. Mitchell - 1986
    Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.