C++ Concurrency in Action: Practical Multithreading


Anthony Williams - 2009
    This book will show you how to write robust multithreaded applications in C++ while avoiding many common pitfalls.About the TechnologyMultiple processors with multiple cores are the norm these days. The C++11 version of the C++ language offers beefed-up support for multithreaded applications, and requires that you master the principles, techniques, and new language features of concurrency to stay ahead of the curve.About the BookWithout assuming you have a background in the subject, CC++ Concurrency in Action gradually enables you to write robust and elegant multithreaded applications in C++11. You'll explore the threading memory model, the new multithreading support library, and basic thread launching and synchronization facilities. Along the way, you'll learn how to navigate the trickier bits of programming for concurrency.Written for C++ programmers who are new to concurrency and others who may have written multithreaded code using other languages, APIs, or platforms.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.What's InsideWritten for the new C++11 Standard Programming for multiple cores and processors Small examples for learning, big examples for practice====================Table of ContentsHello, world of concurrency in C++! Managing threads Sharing data between threads Synchronizing concurrent operations The C++ memory model and operations on atomic types Designing lock-based concurrent data structures Designing lock-free concurrent data structures Designing concurrent code Advanced thread management Testing and debugging multithreaded applications

Combinatorial Optimization: Algorithms and Complexity


Christos H. Papadimitriou - 1998
    All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering. "Mathematicians wishing a self-contained introduction need look no further." — American Mathematical Monthly.

The Imposter's Handbook


Rob Conery - 2016
    New languages, new frameworks, new ways of doing things - a constant struggle just to stay current in the industry. This left no time to learn the foundational concepts and skills that come with a degree in Computer Science.

Working at the Ubuntu Command-Line Prompt


Keir Thomas - 2011
    His books have been read by over 1,000,000 people and are #1 best-sellers. His book Beginning Ubuntu Linux recently entered its sixth edition, and picked-up a Linux Journal award along the way. Thomas is also the author of Ubuntu Kung Fu. * * * * * * * * * * * * * * * * * Get to grips with the Ubuntu command-line with this #1 best-selling and concise guide. "Best buck I've spent yet" — Amazon review.* Readable, accessible and easy to understand;* Learn essential Ubuntu vocational skills, or read just for fun;* Covers Ubuntu commands, syntax, the filesystem, plus advanced techniques;* For ANY version of Linux based on Debian, such as Linux Mint--not just Ubuntu!;* Includes BONUS introduction to Ubuntu chapter, plus a glossary appendix and a guide to reading Linux/Unix documentation.

Physics for Game Developers


David M. Bourg - 2001
    Missile trajectories. Cornering dynamics in speeding cars. By applying the laws of physics, you can realistically model nearly everything in games that bounces around, flies, rolls, slides, or isn't sitting still, to create compelling, believable content for computer games, simulations, and animation. "Physics for Game Developers" serves as the starting point for those who want to enrich games with physics-based realism.Part one is a mechanics primer that reviews basic concepts and addresses aspects of rigid body dynamics, including kinematics, force, and kinetics. Part two applies these concepts to specific real-world problems, such as projectiles, boats, airplanes, and cars. Part three introduces real-time simulations and shows how they apply to computer games. Many specific game elements stand to benefit from the use of real physics, including: The trajectory of rockets and missiles, including the effects of fuel burn offThe collision of objects such as billiard ballsThe stability of cars racing around tight curvesThe dynamics of boats and other waterborne vehiclesThe flight path of a baseball after being struck by a batThe flight characteristics of airplanesYou don't need to be a physics expert to learn from "Physics for Game Developers, " but the author does assume you know basic college-level classical physics. You should also be proficient in trigonometry, vector and matrix math (reference formulas and identities are included in the appendixes), and college-level calculus, including integration and differentiation of explicit functions. Although the thrust of the book involves physics principles and algorithms, it should be noted that the examples are written in standard C and use Windows API functions.

Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists


Philipp K. Janert - 2010
    With this insightful book, intermediate to experienced programmers interested in data analysis will learn techniques for working with data in a business environment. You'll learn how to look at data to discover what it contains, how to capture those ideas in conceptual models, and then feed your understanding back into the organization through business plans, metrics dashboards, and other applications.Along the way, you'll experiment with concepts through hands-on workshops at the end of each chapter. Above all, you'll learn how to think about the results you want to achieve -- rather than rely on tools to think for you.Use graphics to describe data with one, two, or dozens of variablesDevelop conceptual models using back-of-the-envelope calculations, as well asscaling and probability argumentsMine data with computationally intensive methods such as simulation and clusteringMake your conclusions understandable through reports, dashboards, and other metrics programsUnderstand financial calculations, including the time-value of moneyUse dimensionality reduction techniques or predictive analytics to conquer challenging data analysis situationsBecome familiar with different open source programming environments for data analysisFinally, a concise reference for understanding how to conquer piles of data.--Austin King, Senior Web Developer, MozillaAn indispensable text for aspiring data scientists.--Michael E. Driscoll, CEO/Founder, Dataspora

Programming Perl


Tom Christiansen - 1991
    The first edition of this book, Programming Perl, hit the shelves in 1990, and was quickly adopted as the undisputed bible of the language. Since then, Perl has grown with the times, and so has this book.Programming Perl is not just a book about Perl. It is also a unique introduction to the language and its culture, as one might expect only from its authors. Larry Wall is the inventor of Perl, and provides a unique perspective on the evolution of Perl and its future direction. Tom Christiansen was one of the first champions of the language, and lives and breathes the complexities of Perl internals as few other mortals do. Jon Orwant is the editor of The Perl Journal, which has brought together the Perl community as a common forum for new developments in Perl.Any Perl book can show the syntax of Perl's functions, but only this one is a comprehensive guide to all the nooks and crannies of the language. Any Perl book can explain typeglobs, pseudohashes, and closures, but only this one shows how they really work. Any Perl book can say that my is faster than local, but only this one explains why. Any Perl book can have a title, but only this book is affectionately known by all Perl programmers as "The Camel."This third edition of Programming Perl has been expanded to cover version 5.6 of this maturing language. New topics include threading, the compiler, Unicode, and other new features that have been added since the previous edition.

Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to Guide Test Design


James A. Whittaker - 2009
    Whittaker defines both in-the-small techniques for individual testers and in-the-large techniques to supercharge test teams. He also introduces a hybrid strategy for injecting exploratory concepts into traditional scripted testing. You'll learn when to use each, and how to use them all successfully.Concise, entertaining, and actionable, this book introduces robust techniques that have been used extensively by real testers on shipping software, illuminating their actual experiences with these techniques, and the results they've achieved. Writing for testers, QA specialists, developers, program managers, and architects alike, Whittaker answers crucial questions such as:- Why do some bugs remain invisible to automated testing--and how can I uncover them?- What techniques will help me consistently discover and eliminate "show stopper" bugs?- How do I make manual testing more effective--and less boring and unpleasant?- What's the most effective high-level test strategy for each project?- Which inputs should I test when I can't test them all?- Which test cases will provide the best feature coverage?- How can I get better results by combining exploratory testing with traditional script or scenario-based testing?- How do I reflect feedback from the development process, such as code changes?

Get Your Hands Dirty on Clean Architecture: A hands-on guide to creating clean web applications with code examples in Java


Tom Hombergs - 2019
    

Learning Python


Mark Lutz - 2003
    Python is considered easy to learn, but there's no quicker way to mastery of the language than learning from an expert teacher. This edition of "Learning Python" puts you in the hands of two expert teachers, Mark Lutz and David Ascher, whose friendly, well-structured prose has guided many a programmer to proficiency with the language. "Learning Python," Second Edition, offers programmers a comprehensive learning tool for Python and object-oriented programming. Thoroughly updated for the numerous language and class presentation changes that have taken place since the release of the first edition in 1999, this guide introduces the basic elements of the latest release of Python 2.3 and covers new features, such as list comprehensions, nested scopes, and iterators/generators. Beyond language features, this edition of "Learning Python" also includes new context for less-experienced programmers, including fresh overviews of object-oriented programming and dynamic typing, new discussions of program launch and configuration options, new coverage of documentation sources, and more. There are also new use cases throughout to make the application of language features more concrete. The first part of "Learning Python" gives programmers all the information they'll need to understand and construct programs in the Python language, including types, operators, statements, classes, functions, modules and exceptions. The authors then present more advanced material, showing how Python performs common tasks by offering real applications and the libraries available for those applications. Each chapter ends with a series of exercises that will test your Python skills and measure your understanding."Learning Python," Second Edition is a self-paced book that allows readers to focus on the core Python language in depth. As you work through the book, you'll gain a deep and complete understanding of the Python language that will help you to understand the larger application-level examples that you'll encounter on your own. If you're interested in learning Python--and want to do so quickly and efficiently--then "Learning Python," Second Edition is your best choice.

Way of Mastery


Shanti Christo Foundation - 2004
    Contains CD "A Meditation into the Heart of Christ"

Pattern Recognition and Machine Learning


Christopher M. Bishop - 2006
    However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

A Discipline of Programming


Edsger W. Dijkstra - 1976
    

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.