Book picks similar to
Purely Functional Data Structures by Chris Okasaki
programming
computer-science
functional-programming
cs
Software Engineering at Google: Lessons Learned from Programming Over Time
Titus Winters - 2020
With this book, you'll get a candid and insightful look at how software is constructed and maintained by some of the world's leading practitioners.Titus Winters, Tom Manshreck, and Hyrum K. Wright, software engineers and a technical writer at Google, reframe how software engineering is practiced and taught: from an emphasis on programming to an emphasis on software engineering, which roughly translates to programming over time.You'll learn:Fundamental differences between software engineering and programmingHow an organization effectively manages a living codebase and efficiently responds to inevitable changeWhy culture (and recognizing it) is important, and how processes, practices, and tools come into play
Apprenticeship Patterns: Guidance for the Aspiring Software Craftsman
Dave Hoover - 2009
To grow professionally, you also need soft skills and effective learning techniques. Honing those skills is what this book is all about. Authors Dave Hoover and Adewale Oshineye have cataloged dozens of behavior patterns to help you perfect essential aspects of your craft. Compiled from years of research, many interviews, and feedback from O'Reilly's online forum, these patterns address difficult situations that programmers, administrators, and DBAs face every day. And it's not just about financial success. Apprenticeship Patterns also approaches software development as a means to personal fulfillment. Discover how this book can help you make the best of both your life and your career. Solutions to some common obstacles that this book explores in-depth include:Burned out at work? "Nurture Your Passion" by finding a pet project to rediscover the joy of problem solving.Feeling overwhelmed by new information? Re-explore familiar territory by building something you've built before, then use "Retreat into Competence" to move forward again.Stuck in your learning? Seek a team of experienced and talented developers with whom you can "Be the Worst" for a while. "Brilliant stuff! Reading this book was like being in a time machine that pulled me back to those key learning moments in my career as a professional software developer and, instead of having to learn best practices the hard way, I had a guru sitting on my shoulder guiding me every step towards master craftsmanship. I'll certainly be recommending this book to clients. I wish I had this book 14 years ago!" -Russ Miles, CEO, OpenCredo
Soft Skills: The Software Developer's Life Manual
John Z. Sonmez - 2014
In it, developer and life coach John Sonmez addresses a wide range of important "soft" topics, from career and productivity to personal finance and investing, and even fitness and relationships, all from a developer-centric viewpoint.For most software developers, coding is the fun part. The hard bits are dealing with clients, peers, and managers, staying productive, achieving financial security, keeping yourself in shape, and finding true love. This book is here to help.Soft Skills: The software developer's life manual is a guide to a well-rounded, satisfying life as a technology professional. In it, developer and life coach John Sonmez offers advice to developers on important "soft" subjects like career and productivity, personal finance and investing, and even fitness and relationships. Arranged as a collection of 71 short chapters, this fun-to-read book invites you to dip in wherever you like. A Taking Action section at the end of each chapter shows you how to get quick results. Soft Skills will help make you a better programmer, a more valuable employee, and a happier, healthier person.What's InsideBoost your career by building a personal brandJohn's secret ten-step process for learning quicklyFitness advice to turn your geekiness to your advantageUnique strategies for investment and early retirement
Cryptography Engineering: Design Principles and Practical Applications
Niels Ferguson - 2010
Cryptography is vital to keeping information safe, in an era when the formula to do so becomes more and more challenging. Written by a team of world-renowned cryptography experts, this essential guide is the definitive introduction to all major areas of cryptography: message security, key negotiation, and key management. You'll learn how to think like a cryptographer. You'll discover techniques for building cryptography into products from the start and you'll examine the many technical changes in the field.After a basic overview of cryptography and what it means today, this indispensable resource covers such topics as block ciphers, block modes, hash functions, encryption modes, message authentication codes, implementation issues, negotiation protocols, and more. Helpful examples and hands-on exercises enhance your understanding of the multi-faceted field of cryptography.An author team of internationally recognized cryptography experts updates you on vital topics in the field of cryptography Shows you how to build cryptography into products from the start Examines updates and changes to cryptography Includes coverage on key servers, message security, authentication codes, new standards, block ciphers, message authentication codes, and more Cryptography Engineering gets you up to speed in the ever-evolving field of cryptography.
Hacking: The Art of Exploitation
Jon Erickson - 2003
This book explains the technical aspects of hacking, including stack based overflows, heap based overflows, string exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.
Thinking in Java
Bruce Eckel - 1998
The author's take on the essence of Java as a new programming language and the thorough introduction to Java's features make this a worthwhile tutorial. Thinking in Java begins a little esoterically, with the author's reflections on why Java is new and better. (This book's choice of font for chapter headings is remarkably hard on the eyes.) The author outlines his thoughts on why Java will make you a better programmer, without all the complexity. The book is better when he presents actual language features. There's a tutorial to basic Java types, keywords, and operators. The guide includes extensive source code that is sometimes daunting (as with the author's sample code for all the Java operators in one listing.) As such, this text will be most useful for the experienced developer. The text then moves on to class design issues, when to use inheritance and composition, and related topics of information hiding and polymorphism. (The treatment of inner classes and scoping will likely seem a bit overdone for most readers.) The chapter on Java collection classes for both Java Developer's Kit (JDK) 1.1 and the new classes, such as sets, lists, and maps, are much better. There's material in this chapter that you are unlikely to find anywhere else. Chapters on exception handling and programming with type information are also worthwhile, as are the chapters on the new Swing interface classes and network programming. Although it adopts somewhat of a mixed-bag approach, Thinking in Java contains some excellent material for the object-oriented developer who wants to see what all the fuss is about with Java.
Functional Thinking
Neal Ford - 2014
This practical guide from renowned software architect Neal Ford helps you transition from a Java-writing imperative programmer to a functional programmer, using Java, Clojure, and Scala as examples.Rather than focus on specific language features, Functional Thinking looks at a variety of common practices in OOP languages and then shows you how to solve the same problems with a functional language. For instance, you know how to achieve code-reuse in Java via mechanisms such as inheritance and polymorphism. Code reuse is also possible in functional languages, using high-order functions, composition, and multi-methods.Ford encourages you to value results over steps, so you can begin to think like a functional programmer. Expect your mind to be bent, but you’ll finish with a much better understanding of both the syntax and semantics of functional languages.
The Art of Unit Testing: With Examples in .NET
Roy Osherove - 2009
It guides you step by step from simple tests to tests that are maintainable, readable, and trustworthy. It covers advanced subjects like mocks, stubs, and frameworks such as Typemock Isolator and Rhino Mocks. And you'll learn about advanced test patterns and organization, working with legacy code and even untestable code. The book discusses tools you need when testing databases and other technologies. It's written for .NET developers but others will also benefit from this book.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.Table of ContentsThe basics of unit testingA first unit testUsing stubs to break dependenciesInteraction testing using mock objectsIsolation (mock object) frameworksTest hierarchies and organizationThe pillars of good testsIntegrating unit testing into the organizationWorking with legacy code
On LISP: Advanced Techniques for Common LISP
Paul Graham - 1993
On Lisp explains the reasons behind Lisp's growing popularity as a mainstream programming language. On Lisp is a comprehensive study of advanced Lisp techniques, with bottom-up programming as the unifying theme. It gives the first complete description of macros and macro applications. The book also covers important subjects related to bottom-up programming, including functional programming, rapid prototyping, interactive development, and embedded languages. The final chapter takes a deeper look at object-oriented programming than previous Lisp books, showing the step-by-step construction of a working model of the Common Lisp Object System (CLOS). As well as an indispensable reference, On Lisp is a source of software. Its examples form a library of functions and macros that readers will be able to use in their own Lisp programs.
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions
Gregor Hohpe - 2003
The authors also include examples covering a variety of different integration technologies, such as JMS, MSMQ, TIBCO ActiveEnterprise, Microsoft BizTalk, SOAP, and XSL. A case study describing a bond trading system illustrates the patterns in practice, and the book offers a look at emerging standards, as well as insights into what the future of enterprise integration might hold. This book provides a consistent vocabulary and visual notation framework to describe large-scale integration solutions across many technologies. It also explores in detail the advantages and limitations of asynchronous messaging architectures. The authors present practical advice on designing code that connects an application to a messaging system, and provide extensive information to help you determine when to send a message, how to route it to the proper destination, and how to monitor the health of a messaging system. If you want to know how to manage, monitor, and maintain a messaging system once it is in use, get this book.
Programming Erlang
Joe Armstrong - 2007
It's used worldwide by companies who need to produce reliable, efficient, and scalable applications. Invest in learning Erlang now.Moore's Law is the observation that the amount you can do on a single chip doubles every two years. But Moore's Law is taking a detour. Rather than producing faster and faster processors, companies such as Intel and AMD are producing multi-core devices: single chips containing two, four, or more processors. If your programs aren't concurrent, they'll only run on a single processor at a time. Your users will think that your code is slow.Erlang is a programming language designed for building highly parallel, distributed, fault-tolerant systems. It has been used commercially for many years to build massive fault-tolerated systems that run for years with minimal failures.Erlang programs run seamlessly on multi-core computers: this means your Erlang program should run a lot faster on a 4 core processor than on a single core processor, all without you having to change a line of code.Erlang combines ideas from the world of functional programming with techniques for building fault-tolerant systems to make a powerful language for building the massively parallel, networked applications of the future.This book presents Erlang and functional programming in the familiar Pragmatic style. And it's written by Joe Armstrong, one of the creators of Erlang.It includes example code you'll be able to build upon. In addition, the book contains the full source code for two interesting applications:A SHOUTcast server which you can use to stream music to every computer in your house, and a full-text indexing and search engine that can index gigabytes of data. Learn how to write programs that run on dozens or even hundreds of local and remote processors. See how to write robust applications that run even in the face of network and hardware failure, using the Erlang programming language.
The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations
Gene Kim - 2015
For decades, technology leaders have struggled to balance agility, reliability, and security. The consequences of failure have never been greater whether it's the healthcare.gov debacle, cardholder data breaches, or missing the boat with Big Data in the cloud.And yet, high performers using DevOps principles, such as Google, Amazon, Facebook, Etsy, and Netflix, are routinely and reliably deploying code into production hundreds, or even thousands, of times per day.Following in the footsteps of The Phoenix Project, The DevOps Handbook shows leaders how to replicate these incredible outcomes, by showing how to integrate Product Management, Development, QA, IT Operations, and Information Security to elevate your company and win in the marketplace."Table of contentsPrefaceSpreading the Aha! MomentIntroductionPART I: THE THREE WAYS1. Agile, continuous delivery and the three ways2. The First Way: The Principles of Flow3. The Second Way: The Principle of Feedback4. The Third Way: The Principles of Continual LearningPART II: WHERE TO START5. Selecting which value stream to start with6. Understanding the work in our value stream…7. How to design our organization and architecture8. How to get great outcomes by integrating operations into the daily work for developmentPART III: THE FIRST WAY: THE TECHNICAL PRACTICES OF FLOW9. Create the foundations of our deployment pipeline10. Enable fast and reliable automated testing11. Enable and practice continuous integration12. Automate and enable low-risk releases13. Architect for low-risk releasesPART IV: THE SECOND WAY: THE TECHNICAL PRACTICES OF FEEDBACK14*. Create telemetry to enable seeing abd solving problems15. Analyze telemetry to better anticipate problems16. Enable feedbackso development and operation can safely deploy code17. Integrate hypothesis-driven development and A/B testing into our daily work18. Create review and coordination processes to increase quality of our current workPART V: THE THRID WAY: THE TECHNICAL PRACTICES OF CONTINUAL LEARNING19. Enable and inject learning into daily work20. Convert local discoveries into global improvements21. Reserve time to create organizational learning22. Information security as everyone’s job, every day23. Protecting the deployment pipelinePART VI: CONCLUSIONA call to actionConclusion to the DevOps HandbookAPPENDICES1. The convergence of Devops2. The theory of constraints and core chronic conflicts3. Tabular form of downward spiral4. The dangers of handoffs and queues5. Myths of industrial safety6. The Toyota Andon Cord7. COTS Software8. Post-mortem meetings9. The Simian Army10. Transparent uptimeAdditional ResourcesEndnotes
Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale
Neha Narkhede - 2017
And how to move all of this data becomes nearly as important as the data itself. If you� re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds.Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you� ll learn Kafka� s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.Understand publish-subscribe messaging and how it fits in the big data ecosystem.Explore Kafka producers and consumers for writing and reading messagesUnderstand Kafka patterns and use-case requirements to ensure reliable data deliveryGet best practices for building data pipelines and applications with KafkaManage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasksLearn the most critical metrics among Kafka� s operational measurementsExplore how Kafka� s stream delivery capabilities make it a perfect source for stream processing systems