Supersymmetry: Unveiling The Ultimate Laws Of Nature


Gordon L. Kane - 2000
    In this groundbreaking work, renowned physicist Gordon Kane first gives us the basics of the Standard Model, which describes the fundamental constituents and forces of nature. He then explains the next great leap in understanding: the theory of supersymmetry, which implies that each of the fundamental particles has a "superpartner" that can be detected at energies and intensities only now being achieved in the giant accelerators. If Kane and his colleagues are correct, these superpartners will also help solve many of the puzzles of modern physics-such as the existence of the Higgs boson-as well as one of the biggest mysteries is cosmology: the notorious "dark matter" of the universe.

Elements of Physical Chemistry


Peter Atkins - 1992
    This edition is designed to attain a thorough understanding of this vital branch of chemistry.

Space-time and beyond : toward an explanation of the unexplainable


Bob Toben - 1975
    Captioned cartoon drawings offering an overview of universal order as they deal with various phenomena are combined with scientific commentary

Biochemical Engineering Fundamentals


James E. Bailey - 1977
    The biological background provided enables students to comprehend the major problems in biochemical engineering and formulate effective solutions.

Black Holes and Warped Spacetime


William J. Kaufmann III - 1979
    They infinitely warp space and time, allowing nothing to escape: not matter, not even light. They are stellar corpses that have crushed themselves into oblivion, seemingly suspending the traditional laws of physics. The Big bang may have peppered the universe with primordial black holes, as small as protons but as massive as mountains. The universe itself may be disappearing into the final black hole. Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime. The author's engrossing, non-technical explanations are enhanced by numerous illustrations.

Wrinkles in Time


George Smoot - 1993
    Dr. George Smoot, a distinguished cosmologist and adventurer whose quest for cosmic knowledge had taken him from the Brazilian rain forest to the South Pole, unveiled his momentous discovery, bringing to light the very nature of the universe. For anyone who has ever looked up at the night sky and wondered, for anyone who has ever longed to pull aside the fabric of the universe for a glimpse of what lies behind it. Wrinkles in Time is the story of Smoot's search to uncover the cosmic seeds of the universe.Wrinkles in Time is the Double Helix of cosmology, an intimate look at the inner world of men and women who ask. "Why are we here?" It tells the story of George Smoot's dogged pursuit of the cosmic wrinkles in the frozen wastes of Antarctica, on mountaintops, in experiments borne aloft aboard high-altitude balloons, U-2 spy planes, and finally a space satellite. Wrinkles in Time presents the hard science behind the structured violence of the big bang theory through breathtakingly clear, lucid images and meaningful comparisons. Scientists and nonscientists alike can follow with rapt attention the story of how, in a fiery creation, wrinkles formed in space ultimately to become stars, galaxies, and even greater delicate structures. Anyone can appreciate the implications of a universe whose end is written in its beginnings - whose course developed according to a kind of cosmic DNA, which guided the universe from simplicity and symmetry to ever-greater complexity and structure. As controversial as it may seem today, Wrinkles in Time reveals truths that, in an earlier century, would have doomed its proclaimers to the fiery stake. For four thousand years some people have accepted the Genesis account of cosmic origin; for most of this century, scientists debated two rival scientific explanations known as the steady state and big bang theories. And now, Wrinkles in Time tells what really happened. The personal story behind astrophysicist George Smoot's incredible discovery of the origin of the cosmos, hailed by Stephen Hawking as "The scientific discovery of the century, if not of all time."

Who's Afraid of Schrodinger's Cat: All The New Science Ideas You Need To Keep Up With The New Thinking


Ian Marshall - 1997
    The cat lives in an opaque box with a fiendish device that randomly feeds it either food, allowing it to live, or poison, which kills it. But in the quantum world, all possibilities coexist and have a reality of their own, and they ensure that the cat is both alive and dead, simultaneously.Who's Afraid of Schrvdinger's Cat? is a clear, concise explanation of the new sciences of quantum mechanics, chaos and complexity theory, relativity, new theories of mind, and the new cosmology. It studies worlds beyond the realm of common sense, and the new kinds of thinking that we need to understand ourselves, our minds, and our human place in the larger scheme of things.

The Complete Idiot's Guide to String Theory


George Musser - 2008
    The aim of this new revolution is to develop a "theory of everything" -- a set of laws of physics that will explain all that can be explained, ranging from the tiniest subatomic particle to the universe as a whole. Here, readers will learn the ideas behind the theories and their effects upon our world, our civilization, and ourselves.

The Life of the Cosmos


Lee Smolin - 1997
    In The Life of the Cosmos, Smolin cuts the Gordian knot of cosmology with a simple, powerful idea: "The underlying structure of our world, " he writes, "is to be found in the logic of evolution." Today's physicists have overturned Newton's view of the universe, yet they continue to cling to an understanding of reality not unlike Newton's own - as a clock, an intricate mechanism, governed by laws which are mathematical and eternally true. Smolin argues that the laws of nature we observe may be in part the result of a process of natural selection which took place before the big bang. Smolin's ideas are based on recent developments in cosmology, quantum theory, relativity and string theory, yet they offer, at the same time, an unprecedented view of how these developments may fit together to form a new theory of cosmology. From this perspective, the lines between the simple and the complex, the fundamental and the emergent, and even between the biological and the physical are redrawn. The result is a framework that illuminates many intractable problems, from the paradoxes of quantum theory and the nature of space and time to the problem of constructing a final theory of physics. As he argues for this new view, Smolin introduces the reader to recent developments in a wide range of fields, from string theory and quantum gravity to evolutionary theory the structure of galaxies. He examines the philosophical roots of controversies in the foundations of physics, and shows how they may be transformed as science moves towardunderstanding the universe as an interrelated, self-constructed entity, within which life and complexity have a natural place, and in which "the occurrence of novelty, indeed the perpetual birth of novelty, can be understood."

The Man Who Counted Infinity and Other Short Stories from Science, History and Philosophy


Sašo Dolenc - 2012
    The objective here is to explain science in a simple, attractive and fun form that is open to all.The first axiom of this approach was set out as follows: “We believe in the magic of science. We hope to show you that sci-ence is not a secret art, accessible only to a dedicated few. It involves learning about nature and society, and aspects of our existence which affect us all, and which we should all therefore have the chance to understand. We shall interpret science for those who might not speak its language fluently, but want to understand its meaning. We don’t teach, we just tell stories about the beginnings of science, the natural phenomena and the underlying principles through which they occur, and the lives of the people who discovered them.”The aim of the writings collected in this series is to present some key scientific events, ideas and personalities in the form of short stories that are easy and fun to read. Scientific and philo-sophical concepts are explained in a way that anyone may under-stand. Each story may be read separately, but at the same time they all band together to form a wide-ranging introduction to the history of science and areas of contemporary scientific research, as well as some of the recurring problems science has encountered in history and the philosophical dilemmas it raises today.Review“If I were the only survivor on a remote island and all I had with me were this book, a Swiss army knife and a bottle, I would throw the bottle into the sea with the note: ‘Don’t worry, I have everything I need.’”— Ciril Horjak, alias Dr. Horowitz, a comic artist“The writing is understandable, but never simplistic. Instructive, but never patronizing. Straightforward, but never trivial. In-depth, but never too intense.”— Ali Žerdin, editor at Delo, the main Slovenian newspaper“Does science think? Heidegger once answered this question with a decisive No. The writings on modern science skillfully penned by Sašo Dolenc, these small stories about big stories, quickly convince us that the contrary is true. Not only does science think in hundreds of unexpected ways, its intellectual challenges and insights are an inexhaustible source of inspiration and entertainment. The clarity of thought and the lucidity of its style make this book accessible to anyone … in the finest tradition of popularizing science, its achievements, dilemmas and predicaments.”— Mladen Dolar, philosopher and author of A Voice and Nothing More“Sašo Dolenc is undoubtedly one of our most successful authors in the field of popular science, possessing the ability to explain complex scientific achievements to a broader audience in a clear and captivating way while remaining precise and scientific. His collection of articles is of particular importance because it encompasses all areas of modern science in an unassuming, almost light-hearted manner.”— Boštjan Žekš, physicist and former president of the Slovenian Academy of Sciences and Arts

Integrated Electronics: Analog And Digital Circuits And Systems


Jacob Millman - 1971
    

Nikola Tesla: A Captivating Guide to the Life of a Genius Inventor


Captivating History - 2017
    His claim that “harnessing the forces of nature was the only worthwhile scientific endeavor" both impressed and enraged the scientific community. Eventually, his peers could no longer dismiss his eccentricities and began to view him as a crackpot — a potentially dangerous one. Although Tesla’s work was a major factor in the success of the second Industrial Revolution, he died alone, impoverished, and largely shunned by the scientific community that once hailed him a genius. Beset by visions, without a wife or children, Nikola Tesla’s brilliant mind changed the world, even though at the time of his death he passed unnoticed into obscurity. Some of the topics covered in this book include: Childhood Education and Early Career Patents and Politics The Eccentric Genius Tesla’s Coil and the Niagara Contract Influential Friends and the Lure of Flight The Wardenclyffe Tower 1914 and Beyond And much more! Scroll to the top and select the "BUY NOW" button for instant download

Quantum Enigma: Physics Encounters Consciousness


Bruce Rosenblum - 2006
    Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories.Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. Quantum Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schr�dinger showed that it absurdly allowed a cat to be in a superposition simultaneously dead and alive. Einstein derided the theory's spooky interactions. With Bell's Theorem, we now know Schr�dinger's superpositions and Einstein's spooky interactions indeed exist.Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation.Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial.Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing.Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves.

The Book of Nothing: Vacuums, Voids, and the Latest Ideas about the Origins of the Universe


John D. Barrow - 2000
    Augustine equate nothingness with the Devil? What tortuous means did 17th-century scientists employ in their attempts to create a vacuum? And why do contemporary quantum physicists believe that the void is actually seething with subatomic activity? You’ll find the answers in this dizzyingly erudite and elegantly explained book by the English cosmologist John D. Barrow.Ranging through mathematics, theology, philosophy, literature, particle physics, and cosmology, The Book of Nothing explores the enduring hold that vacuity has exercised on the human imagination. Combining high-wire speculation with a wealth of reference that takes in Freddy Mercury and Shakespeare alongside Isaac Newton, Albert Einstein, and Stephen Hawking, the result is a fascinating excursion to the vanishing point of our knowledge.

Powering the Future


Robert B. Laughlin - 2011
    Laughlin transports us two centuries into the future, when we've ceased to use carbon from the ground--either because humans have banned carbon burning or because fuel has simply run out. Boldly, Laughlin predicts no earth-shattering transformations will have taken place. Six generations from now, there will still be soccer moms, shopping malls, and business trips. Firesides will still be snug and warm.How will we do it? Not by discovering a magic bullet to slay our energy problems, but through a slew of fascinating technologies, drawing on wind, water, and fire. Powering the Future is an objective yet optimistic tour through alternative fuel sources, set in a world where we've burned every last drop of petroleum and every last shovelful of coal.The Predictable: Fossil fuels will run out. The present flow of crude oil out of the ground equals in one day the average flow of the Mississippi River past New Orleans in thirteen minutes. If you add the energy equivalents of gas and coal, it's thirty-six minutes. At the present rate of consumption, we'll be out of fossil fuels in two centuries' time. We always choose the cheapest gas. From the nineteenth-century consolidation of the oil business to the California energy crisis of 2000-2001, the energy business has shown, time and again, how low prices dominate market share. Market forces--not green technology--will be the driver of energy innovation in the next 200 years. The laws of physics remain fixed. Energy will still be conserved, degrade entropically with use, and have to be disposed of as waste heat into outer space. How much energy a fuel can pack away in a given space is fixed by quantum mechanics--and if we want to keep flying jet planes, we will need carbon-based fuels. The Potential: Animal waste. If dried and burned, the world's agricultural manure would supply about one-third as much energy as all the coal we presently consume. Trash. The United States disposes of 88 million tons of carbon in its trash per year. While the incineration of waste trash is not enough to contribute meaningfully to the global demand for energy, it will constrain fuel prices by providing a cheap supply of carbon. Solar energy. The power used to light all the cities around the world is only one-millionth of the total power of sunlight pouring down on earth's daytime side. And the amount of hydropump storage required to store the world's daily electrical surge is equal to only eight times the volume of Lake Mead. PRAISE FOR ROBERT B. LAUGHLIN -Perhaps the most brilliant theoretical physicist since Richard Feynman---George Chapline, Lawrence Livermore National Laboratory -Powerful but controversial.--- Financial Times -[Laughlin's] company ... is inspirational.- --New Scientist