Book picks similar to
An Introduction to Homological Algebra by Joseph J. Rotman
mathematics
algebra
math
maths
Elementary Solid State Physics: Principles and Applications
M. Ali Omar - 1975
I also hope that it will serve as a useful reference too for the many workers engaged in one type of solid state research activity or another, who may be without formal training in the subject.
Student Solutions Manual for Contemporary Abstract Algebra
Joseph A. Gallian - 2009
Contains complete worked solutions to all regular exercises and computer exercises in the text; additional test questions and their solutions; an online laboratory manual for the computer algebra system GAP, with exercises tied to the book and an instructor answer key; and links on the author's website to true/false questions, flash cards, essays, software downloads, and other abstract algebra-related materials.
Complex Variables and Applications
James Ward Brown - 1960
It uses examples and exercise sets, with clear explanations of problem-solving techniqes and material on the further theory of functions.
Quantum Mechanics
Claude Cohen-Tannoudji - 1977
Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.
Problems in Mathematics with Hints and Solutions
V. Govorov - 1996
Theory has been provided in points between each chapter for clarifying relevant basic concepts. The book consist four parts algebra and trigonometry, fundamentals of analysis, geometry and vector algebra and the problems and questions set during oral examinations. Each chapter consist topic wise problems. Sample examples are provided after each text for understanding the topic well. The fourth part "oral examination problems and question" includes samples suggested by the higher schools for the help of students. Answers and hints are given at the end of the book for understanding the concept well. About the Book: Problems in Mathematics with Hints and Solutions Contents: Preface Part 1. Algebra, Trigonometry and Elementary Functions Problems on Integers. Criteria for Divisibility Real Number, Transformation of Algebraic Expressions Mathematical Induction. Elements of Combinatorics. BinomialTheorem Equations and Inequalities of the First and the SecondDegree Equations of Higher Degrees, Rational Inequalities Irrational Equations and Inequalities Systems of Equations and Inequalities The Domain of Definition and the Range of a Function Exponential and Logarithmic Equations and Inequalities Transformations of Trigonometric Expressions. InverseTrigonometric Functions Solutions of Trigonometric Equations, Inequalities and Systemsof Equations Progressions Solutions of Problems on Derivation of Equations Complex Numbers Part 2. Fundamentals of Mathematical Analysis Sequences and Their Limits. An Infinitely Decreasing GeometricProgression. Limits of Functions The Derivative. Investigating the Behaviors of Functions withthe Aid of the Derivative Graphs of Functions The Antiderivative. The Integral. The Area of a CurvilinearTrapezoid Part 3. Geometry and Vector Algebra Vector Algebra Plane Geometry. Problems on Proof Plane Geometry. Construction Problems Plane Geometry. C
Student Solutions Guide For Discrete Mathematics And Its Applications
Kenneth H. Rosen - 1988
These themes include mathematical reasoning, combinatorial analysis, discrete structures, algorithmic thinking, and enhanced problem-solving skills through modeling. Its intent is to demonstrate the relevance and practicality of discrete mathematics to all students. The Fifth Edition includes a more thorough and linear presentation of logic, proof types and proof writing, and mathematical reasoning. This enhanced coverage will provide students with a solid understanding of the material as it relates to their immediate field of study and other relevant subjects. The inclusion of applications and examples to key topics has been significantly addressed to add clarity to every subject. True to the Fourth Edition, the text-specific web site supplements the subject matter in meaningful ways, offering additional material for students and instructors. Discrete math is an active subject with new discoveries made every year. The continual growth and updates to the web site reflect the active nature of the topics being discussed. The book is appropriate for a one- or two-term introductory discrete mathematics course to be taken by students in a wide variety of majors, including computer science, mathematics, and engineering. College Algebra is the only explicit prerequisite.
Linear Algebra With Applications
Steven J. Leon - 1980
Each chapter contains integrated worked examples and chapter tests. This edition has the ancillary ATLAST computer exercise guide and new MATLAB and Maple guides.
How to Count to Infinity
Marcus du Sautoy - 2020
But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached.
By the end of this book you'll be able to count to infinity... and beyond.
On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!
Schaum's Outline of Complex Variables
Murray R. Spiegel - 1968
Contains 640 problems including solutions; additional practice problems with answers; explanations of complex variable theory; coverage of applications of complex variables in engineering, physics, and elsewhere, with accompanying sample problems and solutions.
Multivariable Calculus
James Stewart - 1991
In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.
Advanced Engineering Mathematics
Dennis G. Zill - 1992
A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0
Introduction to Linear Algebra
Gilbert Strang - 1993
Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.
The Algorithm Design Manual
Steven S. Skiena - 1997
Drawing heavily on the author's own real-world experiences, the book stresses design and analysis. Coverage is divided into two parts, the first being a general guide to techniques for the design and analysis of computer algorithms. The second is a reference section, which includes a catalog of the 75 most important algorithmic problems. By browsing this catalog, readers can quickly identify what the problem they have encountered is called, what is known about it, and how they should proceed if they need to solve it. This book is ideal for the working professional who uses algorithms on a daily basis and has need for a handy reference. This work can also readily be used in an upper-division course or as a student reference guide. THE ALGORITHM DESIGN MANUAL comes with a CD-ROM that contains: * a complete hypertext version of the full printed book. * the source code and URLs for all cited implementations. * over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to on-line lecture notes.
Real Analysis
H.L. Royden - 1963
Dealing with measure theory and Lebesque integration, this is an introductory graduate text.
Proofs from the Book, 3e
Martin Aigner - 1998
Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."