Artificial Intelligence: A Modern Approach


Stuart Russell - 1994
    The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa

Blockchain Basics: A Non-Technical Introduction in 25 Steps


Daniel Drescher - 2017
    No mathematical formulas, program code, or computer science jargon are used.No previous knowledge in computer science, mathematics, programming, or cryptography is required. Terminology is explained through pictures, analogies, and metaphors.This book bridges the gap that exists between purely technical books about the blockchain and purely business-focused books. It does so by explaining both the technical concepts that make up the blockchain and their role in business-relevant applications.What You Will Learn: • What the blockchain is• Why it is needed and what problem it solves• Why there is so much excitement about the blockchain and its potential• Major components and their purpose• How various components of the blockchain work and interact• Limitations, why they exist, and what has been done to overcome them• Major application scenariosWho This Book Is For: Everyone who wants to get a general idea of what blockchain technology is, how it works, and how it will potentially change the financial system as we know it.

Blockchain: Blueprint for a New Economy


Melanie Swan - 2014
    This book takes you beyond the currency ("Blockchain 1.0") and smart contracts ("Blockchain 2.0") to demonstrate how the blockchain is in position to become the fifth disruptive computing paradigm after mainframes, PCs, the Internet, and mobile/social networking. Author Melanie Swan, Founder of the Institute for Blockchain Studies, explains that the blockchain is essentially a public ledger with potential as a worldwide, decentralized record for the registration, inventory, and transfer of all assets—not just finances, but property and intangible assets such as votes, software, health data, and ideas. Topics include: Concepts, features, and functionality of Bitcoin and the blockchain Using the blockchain for automated tracking of all digital endeavors Enabling censorship?resistant organizational models Creating a decentralized digital repository to verify identity Possibility of cheaper, more efficient services traditionally provided by nations Blockchain for science: making better use of the data-mining network Personal health record storage, including access to one’s own genomic data Open access academic publishing on the blockchain This book is part of an ongoing O’Reilly series. Mastering Bitcoin: Unlocking Digital Crypto-Currencies introduces Bitcoin and describes the technology behind Bitcoin and the blockchain. Blockchain: Blueprint for a New Economy considers theoretical, philosophical, and societal impact of cryptocurrencies and blockchain technologies.

Layered Money: From Gold and Dollars to Bitcoin and Central Bank Digital Currencies


Nik Bhatia - 2021
    

Think Python


Allen B. Downey - 2002
    It covers the basics of computer programming, including variables and values, functions, conditionals and control flow, program development and debugging. Later chapters cover basic algorithms and data structures.

Bitcoin: Hard Money You Can't F*ck With: Why bitcoin will be the next global reserve currency


Jason A. Williams - 2020
    No governments, no companies, no central banks, no money printing. It’s a revolution as big as the internet. And it’s never been hacked.Entrepreneur and investor Jason A. Williams is the first author to put bitcoin in context of the 2020 crisis - a year of financial disaster and unprecedented money creation (money printer go brrr!)Not only was bitcoin the best-performing asset on the planet in 2020, it quietly established itself as the next global reserve currency as central banks around the world desperately printed their money into oblivion.Hard Money You Can’t F*ck With explains bitcoin in simple, readable terms and maps out how this ‘magic internet money’ will grow into the best form of money we’ve ever had.What’s inside?Part 1: Why Bitcoin Matters Now- What is bitcoin?- Who created it?- Why bitcoin is ‘money you can’t f*ck with’- How bitcoin emerged out of the 2008 banking crisis.- Why money printing slowly destroys your wealth.Part 2: A brief history of money (and money printing)- Take a step back and learn ‘what exactly is money?’- Why ‘printing cash’ has always led to the death of currency.- Why bitcoin is the best form of money ever created.Part 3: How bitcoin becomes the next global reserve currency- A deep dive into the 2020 financial crisis and how bitcoin emerged strongest- The emergence of national digital currencies to compete.- Why some nation states are now holding and trading in bitcoin.

The Price of Tomorrow: Why Deflation is the Key to an Abundant Future


Jeff Booth - 2020
    

Dark Pools: The Rise of Artificially Intelligent Trading Machines and the Looming Threat to Wall Street


Scott Patterson - 2012
    In the beginning was Josh Levine, an idealistic programming genius who dreamed of wresting control of the market from the big exchanges that, again and again, gave the giant institutions an advantage over the little guy. Levine created a computerized trading hub named Island where small traders swapped stocks, and over time his invention morphed into a global electronic stock market that sent trillions in capital through a vast jungle of fiber-optic cables. By then, the market that Levine had sought to fix had turned upside down, birthing secretive exchanges called dark pools and a new species of trading machines that could think, and that seemed, ominously, to be slipping the control of their human masters. Dark Pools is the fascinating story of how global markets have been hijacked by trading robots--many so self-directed that humans can't predict what they'll do next.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Code: The Hidden Language of Computer Hardware and Software


Charles Petzold - 1999
    And through CODE, we see how this ingenuity and our very human compulsion to communicate have driven the technological innovations of the past two centuries. Using everyday objects and familiar language systems such as Braille and Morse code, author Charles Petzold weaves an illuminating narrative for anyone who’s ever wondered about the secret inner life of computers and other smart machines. It’s a cleverly illustrated and eminently comprehensible story—and along the way, you’ll discover you’ve gained a real context for understanding today’s world of PCs, digital media, and the Internet. No matter what your level of technical savvy, CODE will charm you—and perhaps even awaken the technophile within.

Crypto: How the Code Rebels Beat the Government—Saving Privacy in the Digital Age


Steven Levy - 2001
    From Stephen Levy—the author who made "hackers" a household word—comes this account of a revolution that is already affecting every citizen in the twenty-first century. Crypto tells the inside story of how a group of "crypto rebels"—nerds and visionaries turned freedom fighters—teamed up with corporate interests to beat Big Brother and ensure our privacy on the Internet. Levy's history of one of the most controversial and important topics of the digital age reads like the best futuristic fiction.

Clean Code: A Handbook of Agile Software Craftsmanship


Robert C. Martin - 2007
    But if code isn't clean, it can bring a development organization to its knees. Every year, countless hours and significant resources are lost because of poorly written code. But it doesn't have to be that way. Noted software expert Robert C. Martin presents a revolutionary paradigm with Clean Code: A Handbook of Agile Software Craftsmanship . Martin has teamed up with his colleagues from Object Mentor to distill their best agile practice of cleaning code on the fly into a book that will instill within you the values of a software craftsman and make you a better programmer but only if you work at it. What kind of work will you be doing? You'll be reading code - lots of code. And you will be challenged to think about what's right about that code, and what's wrong with it. More importantly, you will be challenged to reassess your professional values and your commitment to your craft. Clean Code is divided into three parts. The first describes the principles, patterns, and practices of writing clean code. The second part consists of several case studies of increasing complexity. Each case study is an exercise in cleaning up code - of transforming a code base that has some problems into one that is sound and efficient. The third part is the payoff: a single chapter containing a list of heuristics and "smells" gathered while creating the case studies. The result is a knowledge base that describes the way we think when we write, read, and clean code. Readers will come away from this book understanding ‣ How to tell the difference between good and bad code‣ How to write good code and how to transform bad code into good code‣ How to create good names, good functions, good objects, and good classes‣ How to format code for maximum readability ‣ How to implement complete error handling without obscuring code logic ‣ How to unit test and practice test-driven development This book is a must for any developer, software engineer, project manager, team lead, or systems analyst with an interest in producing better code.

Big Data: A Revolution That Will Transform How We Live, Work, and Think


Viktor Mayer-Schönberger - 2013
    “Big data” refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it. This emerging science can translate myriad phenomena—from the price of airline tickets to the text of millions of books—into searchable form, and uses our increasing computing power to unearth epiphanies that we never could have seen before. A revolution on par with the Internet or perhaps even the printing press, big data will change the way we think about business, health, politics, education, and innovation in the years to come. It also poses fresh threats, from the inevitable end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior.In this brilliantly clear, often surprising work, two leading experts explain what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. Big Data is the first big book about the next big thing.www.big-data-book.com

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details