Fundamental Methods of Mathematical Economics


Alpha C. Chiang - 1974
    The book's patient explanations are written in an informal, non-intimidating style. To underscore the relevance of mathematics to economics, the author allows the economist's analytical needs to motivate the study of related mathematical techniques; he then illustrates these techniques with appropriate economics models. Graphic illustrations often visually reinforce algebraic results. Many exercise problems serve as drills and help bolster student confidence. These major types of economic analysis are covered: statics, comparative statics, optimization problems, dynamics, and mathematical programming. These mathematical methods are introduced: matrix algebra, differential and integral calculus, differential equations, difference equations, and convex sets.

Essentials of Econometrics


Damodar N. Gujarati - 1998
    This text provides a simple and straightforward introduction to econometrics for the beginner. The book is designed to help students understand econometric techniques through extensive examples, careful explanations, and a wide variety of problem material. In each of the editions, I have tried to incorporate major developments in the field in an intuitive and informative way without resort to matrix algebra, calculus, or statistics beyond the introductory level. The fourth edition continues that tradition.

The Artist and the Mathematician: The Story of Nicolas Bourbaki, the Genius Mathematician Who Never Existed


Amir D. Aczel - 2006
    Pure mathematics, the area of Bourbaki's work, seems on the surface to be an abstract field of human study with no direct connection with the real world. In reality, however, it is closely intertwined with the general culture that surrounds it. Major developments in mathematics have often followed important trends in popular culture; developments in mathematics have acted as harbingers of change in the surrounding human culture. The seeds of change, the beginnings of the revolution that swept the Western world in the early decades of the twentieth century — both in mathematics and in other areas — were sown late in the previous century. This is the story both of Bourbaki and the world that created him in that time. It is the story of an elaborate intellectual joke — because Bourbaki, one of the foremost mathematicians of his day — never existed.

Group Theory in the Bedroom, and Other Mathematical Diversions


Brian Hayes - 2008
    (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.

The Golden Ratio: The Divine Beauty of Mathematics


Gary B. Meisner - 2018
    This gorgeous book features clear, entertaining, and enlightening commentary alongside stunning full-color illustrations by Venezuelan artist and architect Rafael Araujo. From the pyramids of Giza, to quasicrystals, to the proportions of the human face, the golden ratio has an infinite capacity to generate shapes with exquisite properties.  With its lush format and layflat dimensions that closely approximate the golden ratio, this is the ultimate coffee table book for math enthusiasts, architects, designers, and fans of sacred geometry.

Schaum's Outline of Discrete Mathematics (Schaum's Outline Series)


Seymour Lipschutz - 2009
    More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.This Schaum's Outline gives you:Practice problems with full explanations that reinforce knowledgeCoverage of the most up-to-date developments in your course fieldIn-depth review of practices and applicationsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores!Schaum's Outlines-Problem Solved.

The Art of Mathematics


Jerry P. King - 1992
    Jerry King is no exception. His informal, nontechnical book, as its title implies, is organized around what Bertrand Russell called the 'supreme beauty' of mathematics--a beauty 'capable of a stern perfection such as only the greatest art can show.'NATUREIn this clear, concise, and superbly written volume, mathematics professor and poet Jerry P. King reveals the beauty that is at the heart of mathematics--and he makes that beauty accessible to all readers. Darting wittily from Euclid to Yeats, from Poincare to Rembrandt, from axioms to symphonies, THE ART OF MATHEMATICS explores the difference between real, rational, and complex numbers; analyzes the intellectual underpinnings of pure and applied mathematics; and reveals the fundamental connection between aesthetics and mathematics. King also sheds light on how mathematicians pursue their research and how our educational system perpetuates the damaging divisions between the two cultures.

Lectures on the Foundations of Mathematics, Cambridge 1939


Ludwig Wittgenstein - 1989
    A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.

Einstein's Heroes: Imagining the World Through the Language of Mathematics


Robyn Arianrhod - 2004
    Einstein's Heroes takes you on a journey of discovery about just such a miraculous language--the language of mathematics--one of humanity's mostamazing accomplishments. Blending science, history, and biography, this remarkable book reveals the mysteries of mathematics, focusing on the life and work of three of Albert Einstein's heroes: Isaac Newton, Michael Faraday, and especially James Clerk Maxwell, whose work directly inspired the theory of relativity. RobynArianrhod bridges the gap between science and literature, portraying mathematics as a language and arguing that a physical theory is a work of imagination involving the elegant and clever use of this language. The heart of the book illuminates how Maxwell, using the language of mathematics in a newand radical way, resolved the seemingly insoluble controversy between Faraday's idea of lines of force and Newton's theory of action-at-a-distance. In so doing, Maxwell not only produced the first complete mathematical description of electromagnetism, but actually predicted the existence of theradio wave, teasing it out of the mathematical language itself. Here then is a fascinating look at mathematics: its colorful characters, its historical intrigues, and above all its role as the uncannily accurate language of nature.

Dialogues on Mathematics


Alfréd Rényi - 1967
    

Wonders Beyond Numbers: A Brief History of All Things Mathematical


Johnny Ball - 2017
    By introducing us to the major characters and leading us through many historical twists and turns, Johnny slowly unravels the tale of how humanity built up a knowledge and understanding of shapes, numbers and patterns from ancient times, a story that leads directly to the technological wonderland we live in today. As Galileo said, 'Everything in the universe is written in the language of mathematics', and Wonders Beyond Numbers is your guide to this language.Mathematics is only one part of this rich and varied tale; we meet many fascinating personalities along the way, such as a mathematician who everyone has heard of but who may not have existed; a Greek philosopher who made so many mistakes that many wanted his books destroyed; a mathematical artist who built the largest masonry dome on earth, which builders had previously declared impossible; a world-renowned painter who discovered mathematics and decided he could no longer stand the sight of a brush; and a philosopher who lost his head, but only after he had died.Enriched with tales of colourful personalities and remarkable discoveries, there is also plenty of mathematics for keen readers to get stuck into. Written in Johnny Ball's characteristically light-hearted and engaging style, this book is packed with historical insight and mathematical marvels; join Johnny and uncover the wonders found beyond the numbers.

Mind Tools: The Five Levels of Mathematical Reality


Rudy Rucker - 1987
    Reveals mathematics' great power as an alternative language for understanding things and explores such concepts as logic as a computing tool, digital versus analog processes and communication as information transmission.

Weird Math: A Teenage Genius and His Teacher Reveal the Strange Connections Between Math and Everyday Life


David Darling - 2018
    As teen math prodigy Agnijo Banerjee and his teacher David Darling reveal, complex math surrounds us. If we think long enough about the universe, we're left not with material stuff, but a ghostly and beautiful set of equations. Packed with puzzles and paradoxes, mind-bending concepts, and surprising solutions, Weird Math leads us from a lyrical exploration of mathematics in our universe to profound questions about God, chance, and infinity. A magical introduction to the mysteries of math, it will entrance beginners and seasoned mathematicians alike.

A Brief History of Mathematical Thought: Key concepts and where they come from


Luke Heaton - 2015
    In A Brief History of Mathematical Thought, Luke Heaton explores how the language of mathematics has evolved over time, enabling new technologies and shaping the way people think. From stone-age rituals to algebra, calculus, and the concept of computation, Heaton shows the enormous influence of mathematics on science, philosophy and the broader human story. The book traces the fascinating history of mathematical practice, focusing on the impact of key conceptual innovations. Its structure of thirteen chapters split between four sections is dictated by a combination of historical and thematic considerations. In the first section, Heaton illuminates the fundamental concept of number. He begins with a speculative and rhetorical account of prehistoric rituals, before describing the practice of mathematics in Ancient Egypt, Babylon and Greece. He then examines the relationship between counting and the continuum of measurement, and explains how the rise of algebra has dramatically transformed our world. In the second section, he explores the origins of calculus and the conceptual shift that accompanied the birth of non-Euclidean geometries. In the third section, he examines the concept of the infinite and the fundamentals of formal logic. Finally, in section four, he considers the limits of formal proof, and the critical role of mathematics in our ongoing attempts to comprehend the world around us. The story of mathematics is fascinating in its own right, but Heaton does more than simply outline a history of mathematical ideas. More importantly, he shows clearly how the history and philosophy of maths provides an invaluable perspective on human nature.