Book picks similar to
Numerical Recipes: The Art of Scientific Computing by William H. Press
programming
computer-science
mathematics
math
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Python Cookbook
David Beazley - 2002
Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions
Head First Java
Kathy Sierra - 2005
You might think the problem is your brain. It seems to have a mind of its own, a mind that doesn't always want to take in the dry, technical stuff you're forced to study. The fact is your brain craves novelty. It's constantly searching, scanning, waiting for something unusual to happen. After all, that's the way it was built to help you stay alive. It takes all the routine, ordinary, dull stuff and filters it to the background so it won't interfere with your brain's real work--recording things that matter. How does your brain know what matters? It's like the creators of the Head First approach say, suppose you're out for a hike and a tiger jumps in front of you, what happens in your brain? Neurons fire. Emotions crank up. Chemicals surge. That's how your brain knows.And that's how your brain will learn Java. Head First Java combines puzzles, strong visuals, mysteries, and soul-searching interviews with famous Java objects to engage you in many different ways. It's fast, it's fun, and it's effective. And, despite its playful appearance, Head First Java is serious stuff: a complete introduction to object-oriented programming and Java. You'll learn everything from the fundamentals to advanced topics, including threads, network sockets, and distributed programming with RMI. And the new. second edition focuses on Java 5.0, the latest version of the Java language and development platform. Because Java 5.0 is a major update to the platform, with deep, code-level changes, even more careful study and implementation is required. So learning the Head First way is more important than ever. If you've read a Head First book, you know what to expect--a visually rich format designed for the way your brain works. If you haven't, you're in for a treat. You'll see why people say it's unlike any other Java book you've ever read.By exploiting how your brain works, Head First Java compresses the time it takes to learn and retain--complex information. Its unique approach not only shows you what you need to know about Java syntax, it teaches you to think like a Java programmer. If you want to be bored, buy some other book. But if you want to understand Java, this book's for you.
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Elements of Programming
Alexander Stepanov - 2009
And then we wonder why software is notorious for being delivered late and full of bugs, while other engineers routinely deliver finished bridges, automobiles, electrical appliances, etc., on time and with only minor defects. This book sets out to redress this imbalance. Members of my advanced development team at Adobe who took the course based on the same material all benefited greatly from the time invested. It may appear as a highly technical text intended only for computer scientists, but it should be required reading for all practicing software engineers." --Martin Newell, Adobe Fellow"The book contains some of the most beautiful code I have ever seen." --Bjarne Stroustrup, Designer of C++"I am happy to see the content of Alex's course, the development and teaching of which I strongly supported as the CTO of Silicon Graphics, now available to all programmers in this elegant little book." --Forest Baskett, General Partner, New Enterprise Associates"Paul's patience and architectural experience helped to organize Alex's mathematical approach into a tightly-structured edifice--an impressive feat!" --Robert W. Taylor, Founder of Xerox PARC CSL and DEC Systems Research Center Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. The book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.This is not an easy book. Nor is it a compilation of tips and tricks for incremental improvements in your programming skills. The book's value is more fundamental and, ultimately, more critical for insight into programming. To benefit fully, you will need to work through it from beginning to end, reading the code, proving the lemmas, and doing the exercises. When finished, you will see how the application of the deductive method to your programs assures that your system's software components will work together and behave as they must.The book presents a number of algorithms and requirements for types on which they are defined. The code for these descriptions--also available on the Web--is written in a small subset of C++ meant to be accessible to any experienced programmer. This subset is defined in a special language appendix coauthored by Sean Parent and Bjarne Stroustrup.Whether you are a software developer, or any other professional for whom programming is an important activity, or a committed student, you will come to understand what the book's experienced authors have been teaching and demonstrating for years--that mathematics is good for programming, and that theory is good for practice.
Head First Design Patterns
Eric Freeman - 2004
At any given moment, somewhere in the world someone struggles with the same software design problems you have. You know you don't want to reinvent the wheel (or worse, a flat tire), so you look to Design Patterns--the lessons learned by those who've faced the same problems. With Design Patterns, you get to take advantage of the best practices and experience of others, so that you can spend your time on...something else. Something more challenging. Something more complex. Something more fun. You want to learn about the patterns that matter--why to use them, when to use them, how to use them (and when NOT to use them). But you don't just want to see how patterns look in a book, you want to know how they look "in the wild". In their native environment. In other words, in real world applications. You also want to learn how patterns are used in the Java API, and how to exploit Java's built-in pattern support in your own code. You want to learn the real OO design principles and why everything your boss told you about inheritance might be wrong (and what to do instead). You want to learn how those principles will help the next time you're up a creek without a design pattern. Most importantly, you want to learn the "secret language" of Design Patterns so that you can hold your own with your co-worker (and impress cocktail party guests) when he casually mentions his stunningly clever use of Command, Facade, Proxy, and Factory in between sips of a martini. You'll easily counter with your deep understanding of why Singleton isn't as simple as it sounds, how the Factory is so often misunderstood, or on the real relationship between Decorator, Facade and Adapter. With Head First Design Patterns, you'll avoid the embarrassment of thinking Decorator is something from the "Trading Spaces" show. Best of all, in a way that won't put you to sleep! We think your time is too important (and too short) to spend it struggling with academic texts. If you've read a Head First book, you know what to expect--a visually rich format designed for the way your brain works. Using the latest research in neurobiology, cognitive science, and learning theory, Head First Design Patterns will load patterns into your brain in a way that sticks. In a way that lets you put them to work immediately. In a way that makes you better at solving software design problems, and better at speaking the language of patterns with others on your team.
Effective C++: 55 Specific Ways to Improve Your Programs and Designs
Scott Meyers - 1991
But the state-of-the-art has moved forward dramatically since Meyers last updated this book in 1997. (For instance, there s now STL. Design patterns. Even new functionality being added through TR1 and Boost.) So Meyers has done a top-to-bottom rewrite, identifying the 55 most valuable techniques you need now to be exceptionally effective with C++. Over half of this edition s content is new. Templates broadly impact C++ development, and you ll find them everywhere. There s extensive coverage of multithreaded systems. There s an entirely new chapter on resource management. You ll find substantial new coverage of exceptions. Much is gained, but nothing s lost: You ll find the same depth of practical insight that first made Effective C++ a classic all those years ago. Bill Camarda, from the July 2005 href="http://www.barnesandnoble.com/newslet... Only
The New Turing Omnibus: 66 Excursions In Computer Science
A.K. Dewdney - 1989
K. Dewdney's The Turing Omnibus.Updated and expanded, The Turing Omnibus offers 66 concise, brilliantly written articles on the major points of interest in computer science theory, technology, and applications. New for this tour: updated information on algorithms, detecting primes, noncomputable functions, and self-replicating computers--plus completely new sections on the Mandelbrot set, genetic algorithms, the Newton-Raphson Method, neural networks that learn, DOS systems for personal computers, and computer viruses.Contents:1 Algorithms 2 Finite Automata 3 Systems of Logic 4 Simulation 5 Godel's Theorem 6 Game Trees 7 The Chomsky Hierarchy 8 Random Numbers 9 Mathematical Research 10 Program Correctness 11 Search Trees 12 Error-Corecting Codes 13 Boolean Logic 14 Regular Languages 15 Time and Space Complexity 16 Genetic Algorithms 17 The Random Access Machine 18 Spline Curves 19 Computer Vision 20 Karnaugh Maps 21 The Newton-Raphson Method 22 Minimum Spanning Trees 23 Generative Grammars 24 Recursion 25 Fast Multiplication 26 Nondeterminism 27 Perceptrons 28 Encoders and Multiplexers 29 CAT Scanning 30 The Partition Problem 31 Turing Machines 32 The Fast Fourier Transform 33 Analog Computing 34 Satisfiability 35 Sequential Sorting 36 Neural Networks That Learn 37 Public Key Cryptography 38 Sequential Cirucits 39 Noncomputerable Functions 40 Heaps and Merges 41 NP-Completeness 42 Number Systems for Computing 43 Storage by Hashing 44 Cellular Automata 45 Cook's Theorem 46 Self-Replicating Computers 47 Storing Images 48 The SCRAM 49 Shannon's Theory 50 Detecting Primes 51 Universal Turing Machines 52 Text Compression 53 Disk Operating Systems 54 NP-Complete Problems 55 Iteration and Recursion 56 VLSI Computers 57 Linear Programming 58 Predicate Calculus 59 The Halting Problem 60 Computer Viruses 61 Searching Strings 62 Parallel Computing 63 The Word Problem 64 Logic Programming 65 Relational Data Bases 66 Church's Thesis
Pearls of Functional Algorithm Design
Richard S. Bird - 2010
These 30 short chapters each deal with a particular programming problem drawn from sources as diverse as games and puzzles, intriguing combinatorial tasks, and more familiar areas such as data compression and string matching. Each pearl starts with the statement of the problem expressed using the functional programming language Haskell, a powerful yet succinct language for capturing algorithmic ideas clearly and simply. The novel aspect of the book is that each solution is calculated from an initial formulation of the problem in Haskell by appealing to the laws of functional programming. Pearls of Functional Algorithm Design will appeal to the aspiring functional programmer, students and teachers interested in the principles of algorithm design, and anyone seeking to master the techniques of reasoning about programs in an equational style.
Matrix Computations
Gene H. Golub - 1983
It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.
Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers
John MacCormick - 2012
A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.
Computer Vision: Algorithms and Applications
Richard Szeliski - 2010
However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art?Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos.More than just a source of "recipes," this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniquesTopics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory Suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book Supplies supplementary course material for students at the associated website, http: //szeliski.org/Book/ Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
Numerical Analysis
Richard L. Burden - 1978
Explaining how, why, and when the techniques can be expected to work, the Seventh Edition places an even greater emphasis on building readers' intuition to help them understand why the techniques presented work in general, and why, in some situations, they fail. Applied problems from diverse areas, such as engineering and physical, computer, and biological sciences, are provided so readers can understand how numerical methods are used in real-life situations. The Seventh Edition has been updated and now addresses the evolving use of technology, incorporating it whenever appropriate.
The C Programming Language
Brian W. Kernighan - 1978
It is the definitive reference guide, now in a second edition. Although the first edition was written in 1978, it continues to be a worldwide best-seller. This second edition brings the classic original up to date to include the ANSI standard. From the Preface: We have tried to retain the brevity of the first edition. C is not a big language, and it is not well served by a big book. We have improved the exposition of critical features, such as pointers, that are central to C programming. We have refined the original examples, and have added new examples in several chapters. For instance, the treatment of complicated declarations is augmented by programs that convert declarations into words and vice versa. As before, all examples have been tested directly from the text, which is in machine-readable form. As we said in the first preface to the first edition, C "wears well as one's experience with it grows." With a decade more experience, we still feel that way. We hope that this book will help you to learn C and use it well.
Computer Networking: A Top-Down Approach
James F. Kurose - 2000
Building on the successful top-down approach of previous editions, this fourth edition continues with an early emphasis on application-layer paradigms and application programming interfaces, encouraging a hands-on experience with protocols and networking concepts.