Book picks similar to
Fundamentals of Neural Networks: Architectures, Algorithms and Applications by Laurene V. Fausett
artificial-intelligence
computer-science
science
machine-learning
Hackers: Heroes of the Computer Revolution
Steven Levy - 1984
That was before one pioneering work documented the underground computer revolution that was about to change our world forever. With groundbreaking profiles of Bill Gates, Steve Wozniak, MIT's Tech Model Railroad Club, and more, Steven Levy's Hackers brilliantly captured a seminal moment when the risk-takers and explorers were poised to conquer twentieth-century America's last great frontier. And in the Internet age, the hacker ethic-first espoused here-is alive and well.
The Book of PoC||GTFO
Manul Laphroaig - 2017
Until now, the journal has only been available online or printed and distributed for free at hacker conferences worldwide.Consistent with the journal's quirky, biblical style, this book comes with all the trimmings: a leatherette cover, ribbon bookmark, bible paper, and gilt-edged pages. The book features more than 80 technical essays from numerous famous hackers, authors of classics like "Reliable Code Execution on a Tamagotchi," "ELFs are Dorky, Elves are Cool," "Burning a Phone," "Forget Not the Humble Timing Attack," and "A Sermon on Hacker Privilege." Twenty-four full-color pages by Ange Albertini illustrate many of the clever tricks described in the text.
The Emperor's New Mind: Concerning Computers, Minds and the Laws of Physics
Roger Penrose - 1989
Admittedly, computers now play chess at the grandmaster level, but do they understand the game as we do? Can a computer eventually do everything a human mind can do? In this absorbing and frequently contentious book, Roger Penrose--eminent physicist and winner, with Stephen Hawking, of the prestigious Wolf prize--puts forward his view that there are some facets of human thinking that can never be emulated by a machine. Penrose examines what physics and mathematics can tell us about how the mind works, what they can't, and what we need to know to understand the physical processes of consciousness. He is among a growing number of physicists who think Einstein wasn't being stubborn when he said his little finger told him that quantum mechanics is incomplete, and he concludes that laws even deeper than quantum mechanics are essential for the operation of a mind. To support this contention, Penrose takes the reader on a dazzling tour that covers such topics as complex numbers, Turing machines, complexity theory, quantum mechanics, formal systems, Godel undecidability, phase spaces, Hilbert spaces, black holes, white holes, Hawking radiation, entropy, quasicrystals, the structure of the brain, and scores of other subjects. The Emperor's New Mind will appeal to anyone with a serious interest in modern physics and its relation to philosophical issues, as well as to physicists, mathematicians, philosophers and those on either side of the AI debate.
Our Final Invention: Artificial Intelligence and the End of the Human Era
James Barrat - 2013
Corporations & government agencies around the world are pouring billions into achieving AI’s Holy Grail—human-level intelligence. Once AI has attained it, scientists argue, it will have survival drives much like our own. We may be forced to compete with a rival more cunning, more powerful & more alien than we can imagine. Thru profiles of tech visionaries, industry watchdogs & groundbreaking AI systems, James Barrat's Our Final Invention explores the perils of the heedless pursuit of advanced AI. Until now, human intelligence has had no rival. Can we coexist with beings whose intelligence dwarfs our own? Will they allow us to?
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
Advanced Programming in the UNIX Environment
W. Richard Stevens - 1992
Rich Stevens describes more than 200 system calls and functions; since he believes the best way to learn code is to read code, a brief example accompanies each description.Building upon information presented in the first 15 chapters, the author offers chapter-long examples teaching you how to create a database library, a PostScript printer driver, a modem dialer, and a program that runs other programs under a pseudo terminal. To make your analysis and understanding of this code even easier, and to allow you to modify it, all of the code in the book is available via UUNET.A 20-page appendix provides detailed function prototypes for all the UNIX, POSIX, and ANSI C functions that are described in the book, and lists the page on which each prototype function is described in detail. Additional tables throughout the text and a thorough index make Advanced Programming in the UNIX Environment an invaluable reference tool that all UNIX programmers - beginners to experts - w
Learning Spark: Lightning-Fast Big Data Analysis
Holden Karau - 2013
How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates.
Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning.
Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell
Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib
Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm
Learn how to deploy interactive, batch, and streaming applications
Connect to data sources including HDFS, Hive, JSON, and S3
Master advanced topics like data partitioning and shared variables
The R Book
Michael J. Crawley - 2007
The R language is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply many statistical techniques that would be impossible without such software to help implement such large data sets.
Peopleware: Productive Projects and Teams
Tom DeMarco - 1987
The answers aren't easy -- just incredibly successful.
Practical Vim: Edit Text at the Speed of Thought
Drew Neil - 2012
It's available on almost every OS--if you master the techniques in this book, you'll never need another text editor. Practical Vim shows you 120 vim recipes so you can quickly learn the editor's core functionality and tackle your trickiest editing and writing tasks. Vim, like its classic ancestor vi, is a serious tool for programmers, web developers, and sysadmins. No other text editor comes close to Vim for speed and efficiency; it runs on almost every system imaginable and supports most coding and markup languages. Learn how to edit text the "Vim way:" complete a series of repetitive changes with The Dot Formula, using one keystroke to strike the target, followed by one keystroke to execute the change. Automate complex tasks by recording your keystrokes as a macro. Run the same command on a selection of lines, or a set of files. Discover the "very magic" switch, which makes Vim's regular expression syntax more like Perl's. Build complex patterns by iterating on your search history. Search inside multiple files, then run Vim's substitute command on the result set for a project-wide search and replace. All without installing a single plugin! You'll learn how to navigate text documents as fast as the eye moves--with only a few keystrokes. Jump from a method call to its definition with a single command. Use Vim's jumplist, so that you can always follow the breadcrumb trail back to the file you were working on before. Discover a multilingual spell-checker that does what it's told.Practical Vim will show you new ways to work with Vim more efficiently, whether you're a beginner or an intermediate Vim user. All this, without having to touch the mouse.What You Need: Vim version 7
The Art of Readable Code
Dustin Boswell - 2010
Over the past five years, authors Dustin Boswell and Trevor Foucher have analyzed hundreds of examples of "bad code" (much of it their own) to determine why they’re bad and how they could be improved. Their conclusion? You need to write code that minimizes the time it would take someone else to understand it—even if that someone else is you.This book focuses on basic principles and practical techniques you can apply every time you write code. Using easy-to-digest code examples from different languages, each chapter dives into a different aspect of coding, and demonstrates how you can make your code easy to understand.Simplify naming, commenting, and formatting with tips that apply to every line of codeRefine your program’s loops, logic, and variables to reduce complexity and confusionAttack problems at the function level, such as reorganizing blocks of code to do one task at a timeWrite effective test code that is thorough and concise—as well as readable"Being aware of how the code you create affects those who look at it later is an important part of developing software. The authors did a great job in taking you through the different aspects of this challenge, explaining the details with instructive examples." —Michael Hunger, passionate Software Developer
The Intelligent Web: Search, Smart Algorithms, and Big Data
Gautam Shroff - 2013
These days, linger over a Web page selling lamps, and they will turn up at the advertising margins as you move around the Internet, reminding you, tempting you to make that purchase. Search engines such as Google can now look deep into the data on the Web to pull out instances of the words you are looking for. And there are pages that collect and assess information to give you a snapshot of changing political opinion. These are just basic examples of the growth of Web intelligence, as increasingly sophisticated algorithms operate on the vast and growing amount of data on the Web, sifting, selecting, comparing, aggregating, correcting; following simple but powerful rules to decide what matters. While original optimism for Artificial Intelligence declined, this new kind of machine intelligence is emerging as the Web grows ever larger and more interconnected.Gautam Shroff takes us on a journey through the computer science of search, natural language, text mining, machine learning, swarm computing, and semantic reasoning, from Watson to self-driving cars. This machine intelligence may even mimic at a basic level what happens in the brain.
The Elements of Computing Systems: Building a Modern Computer from First Principles
Noam Nisan - 2005
The books also provides a companion web site that provides the toold and materials necessary to build the hardware and software.
Writing Solid Code
Steve Maguire - 1993
Focus is on an in-depth analysis and exposition of not-so-obvious coding errors in the sample code provided. The theme is to answer the questions 'How couild I have automatically detected this bug' and 'How could I have prevented this bug'? Chapters include programmer attitudes, techniques and debugging methodology. A particularly revealing chapter is "Treacheries of the Trade", should be required reading for all C maniacs. The author has been a professional programmer for seventeen years and draws heavily (and candidly) on actual coding problems and practices based on years of experience at Microsoft.
Feature Engineering for Machine Learning
Alice Zheng - 2018
With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.