Manufacturing Processes for Engineering Materials


Serope Kalpakjian - 2007
    The book carefully presents the fundamentals of materials processing along with their relevant applications, so that the reader can clearly assess the capabilities, limitations, and potentials of manufacturing processes and their competitive aspects. Using real-world examples and well-wrought graphics, this book covers a multitude of topics, including the mechanical behavior of materials; the structure and manufacturing properties of metals; surfaces, dimensional characteristics, inspection, and quality assurance; metal-casting processes including heat treatment; bulk deformation processes; sheet-metal forming processes; material removal processes; polymers, reinforced plastics, rapid prototyping and rapid tooling; metal powders, ceramics, glasses, composites, and superconductors; joining and fastening processes; microelectronic and micromechanical devices; automation; computer-integrated systems; and product design. For manufacturing engineers, metallurgists, industrial designers, material handlers, product designers, and quality assurance managers.

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

The Elements of Statistical Learning: Data Mining, Inference, and Prediction


Trevor Hastie - 2001
    With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.

Successful Business Intelligence: Secrets to Making BI a Killer App


Cindi Howson - 2007
    Learn about the components of a BI architecture, how to choose the appropriate tools and technologies, and how to roll out a BI strategy throughout the organisation.

CCNA Portable Command Guide


Scott D. Empson - 2005
    The 'CCNA Portable Command Guide' is a supplementary guide to assist network administrators in the proper use of the Cisco IOS and of the commands needed to pass the CCNA vendor exam.

Think Stats


Allen B. Downey - 2011
    This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Footballistics


James Coventry - 2018
    The nature of football continually changes, which means its analysis must also keep pace. This book is for students, thinkers, and theorists of the game.'Ted Hopkins - Carlton premiership player, author, and co-founder of Champion Data. Australian Rules football has been described as the most data-rich sport on Earth. Every time and everywhere an AFL side takes to the field, it is shadowed by an army of statisticians and number crunchers. The information they gather has become the sport's new language and currency. ABC journalist James Coventry, author of the acclaimed Time and Space, has joined forces with a group of razor-sharp analysts to decipher the data, and to use it to question some of football's long-held truisms. Do umpires really favour the home side? Has goal kicking accuracy deteriorated? Is Geelong the true master of the draft? Are blonds unfairly favoured in Brownlow medal voting? And are Victorians the most passionate fans? Through a blend of entertaining storytelling and expert analysis, this book will answer more questions about footy than you ever thought to ask. Praise for Time and Space:'Brilliant, masterful' - The Guardian'Arguably one of the most important books yet written on Australian Rules football.' - Inside History'Should find its way into the hands of every coach.' - AFL Record

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science


Bradley Efron - 2016
    'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

My Kindle Fire (My...)


Jim Cheshire - 2011
    With this book you will learn how to tap into every Kindle Fire feature, including many of the hidden ones not discussed in other books. From setting up your Kindle Page, managing your music, watching movies, and downloading content - this book covers everything. The task based full-color format allows you to quickly and easily find the exact task you want to accomplish and walks you through it in a delightfully concise and visual manner. My Kindle Fire makes it easy for you to:• Master all the basics, fast: reading, playing, watching, browsing, and more• Tweak your Kindle Fire for quicker access and longer battery life• Sample best-seller book chapters for free• Mark up any eBook with highlights, notes, and bookmarks• Convert your personal documents for use on Kindle Fire• Discover Calibre, a powerful eBook management tool• Control even the largest music libraries• Get instant answers from Wikipedia, and from Kindle Fire’s built-in dictionary• Listen to personalized Internet radio stations created just for you• Use your Kindle Fire as a digital photo frame• Prevent unwanted subscription charges• Set up any email account to work on your Kindle Fire• Explore any web content with Amazon’s innovative Silk browser• Use Amazon Cloud to get your stuff anywhere—even if you left your Kindle at home• And much much more…Unlike many other guides which might only briefly mention or skip over some very import Kindle Fire features My Kindle Fire covers everything. Here are just a few of the things you'll find in My Kindle Fire that aren't covered in other guides: • Full coverage of Calibre, a free application for Mac or PC that helps manage your eBook library• A large number of walkthroughs for managing music playlists, including how to use cloud playlists. • How to reinstall multiple apps at once in case you reset your Kindle Fire. • Step-by-step walkthroughs on configuring all types of email accounts. • Coverage on handling attachments in your email application. • Importing contacts from your existing email application or cloud service and how you can export your contacts in order to back them up. • How to use Copy and Paste on the Kindle Fire. • How to use social networking integration with Facebook and others. • Walkthroughs on using the Gallery app, Pandora, Audible, and other popular apps. • Shows you how to access files on other computers in your house right from your Kindle Fire.

Signal Processing and Linear Systems


B.P. Lathi - 2000
    Based on B. P. Lathi's widely used book, Linear Systems and Signals, it features additional applications to communications, controls, and filtering as well as new chapters on analog and digital filters and digital signal processing. Lathi emphasizes the physical appreciation of concepts rather than the mere mathematical manipulation of symbols. Avoiding the tendency to treat engineering as a branch of applied mathematics, he uses mathematics to enhance physical and intuitive understanding of concepts, instead of employing it only to prove axiomatic theory. Theoretical results are supported by carefully chosen examples and analogies, allowing students to intuitively discover meaning for themselves.

Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data

Fundamentals of Biostatistics (with CD-ROM)


Bernard Rosner - 1982
    Fundamentals of Biostatistics with CD-Rom.