The Little Book of Scientific Principles, Theories and Things


Surendra Verma - 2005
    It features all the great names in science, including Pythagoras, Galileo, Newton, Darwin, and Einstein, as well as more recent contributors such as Rachel Carson, James Lovelock, and Stephen Hawking.This little book presents serious science simply, answering questions like:What is Pythagorean Theorem? What is the difference between circadian rhythms and the popular concept of biorhythms? What is Hawking’s Black Hole Theory? Who developed the World Wide Web?

Empire of the Stars: Obsession, Friendship and Betrayal in the Quest for Black Holes


Arthur I. Miller - 2005
    Subrahmanyan Chandrasekhar--Chandra, as he was called--calculated that certain stars would suffer a strange and violent death, collapsing to virtually nothing. This extraordinary claim, the first mathematical description of black holes, brought Chandra into direct conflict with Sir Arthur Eddington, one of the greatest astrophysicists of the day. Eddington ridiculed the young man's idea at a meeting of the Royal Astronomy Society in 1935, sending Chandra into an intellectual and emotional tailspin--and hindering the progress of astrophysics for nearly forty years. Empire of the Stars is the dramatic story of this intellectual debate and its implications for twentieth-century science. Arthur I. Miller traces the idea of black holes from early notions of "dark stars" to the modern concepts of wormholes, quantum foam, and baby universes. In the process, he follows the rise of two great theories--relativity and quantum mechanics--that meet head on in black holes. Empire of the Stars provides a unique window into the remarkable quest to understand how stars are born, how they live, and, most portentously (for their fate is ultimately our own), how they die. It is also the moving tale of one man's struggle against the establishment--an episode that sheds light on what science is, how it works, and where it can go wrong. Miller exposes the deep-seated prejudices that plague even the most rational minds. Indeed, it took the nuclear arms race to persuade scientists to revisit Chandra's work from the 1930s, for the core of a hydrogen bomb resembles nothing so much as an exploding star. Only then did physicists realize the relevance, truth, and importance of Chandra's work, which was finally awarded a Nobel Prize in 1983. Set against the waning days of the British Empire and taking us right up to the present, this sweeping history examines the quest to understand one of the most forbidding phenomena in the universe, as well as the passions that fueled that quest over the course of a century.

Electronics Fundamentals: Circuits, Devices and Applications (Floyd Electronics Fundamentals Series)


Thomas L. Floyd - 1983
    Written in a clear and accessible narrative, the 7th Edition focuses on fundamental principles and their applications to solving real circuit analysis problems, and devotes six chapters to examining electronic devices. With an eye-catching visual program and practical exercises, this book provides readers with the problem-solving experience they need in a style that makes complex material thoroughly understandable. For professionals with a career in electronics, engineering, technical sales, field service, industrial manufacturing, service shop repair, and/or technical writing.

Quantum Physics: A Beginner's Guide


Alastair I.M. Rae - 2005
    Drawing on a wealth of expertise to explain just what a fascinating field quantum physics is, Rae points out that it is not simply a maze of technical jargon and philosophical ideas, but a reality which affects our daily lives.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

The Cosmic Cocktail: Three Parts Dark Matter


Katherine Freese - 2014
    The rest is known as dark matter and dark energy, because their precise identities are unknown. "The Cosmic Cocktail" is the inside story of the epic quest to solve one of the most compelling enigmas of modern science--what is the universe made of?--told by one of today's foremost pioneers in the study of dark matter.Blending cutting-edge science with her own behind-the-scenes insights as a leading researcher in the field, acclaimed theoretical physicist Katherine Freese recounts the hunt for dark matter, from the discoveries of visionary scientists like Fritz Zwicky--the Swiss astronomer who coined the term "dark matter" in 1933--to the deluge of data today from underground laboratories, satellites in space, and the Large Hadron Collider. Theorists contend that dark matter consists of fundamental particles known as WIMPs, or weakly interacting massive particles. Billions of them pass through our bodies every second without us even realizing it, yet their gravitational pull is capable of whirling stars and gas at breakneck speeds around the centers of galaxies, and bending light from distant bright objects. Freese describes the larger-than-life characters and clashing personalities behind the race to identify these elusive particles.Many cosmologists believe we are on the verge of solving the mystery. "The Cosmic Cocktail" provides the foundation needed to fully fathom this epochal moment in humankind's quest to understand the universe.

The Wizard of Quarks: A Fantasy of Particle Physics


Robert Gilmore - 2000
    This time physicist Robert Gilmore takes us on a journey with Dorothy, following the yellow building block road through the land of the Wizard of Quarks. Using characters and situations based on the Wizard of Oz story, we learn along the way about the fascinating world of particle physics. Classes of particles, from quarks to leptons are shown in an atomic garden, where atoms and molecules are produced. See how Dorothy, The Tin Geek, and the Cowardly Lion experience the bizarre world of subatomic particles.

The Ascent of Science


Brian L. Silver - 1990
    Silver translates our most important, and often most obscure, scientific developments into a vernacular that is not only accessible and illuminating but also enjoyable. Silver makes his comprehensive case with much clarity and insight; his book aptly locates science as the apex of human reason, and reason as our best path to the truth. For all readers curious about--or else perhaps intimidated by--what Silver calls the scientific campaign up to now in his Preface, The Ascent of Science will be fresh, vivid, and fascinating reading.

College Physics: A Strategic Approach


Randall D. Knight - 2006
    [...] Built from the ground up on a wealth of research into how readers learn physics and how they can be taught more effectively, College Physics leads readers to more proficient and long-lasting problem-solving skills, a deeper and better-connected understanding of the concepts, and a broader picture of the relevance of physics to the world around them. Force and Motion: Concepts of Motion and Mathematical Background, Motion in One Dimension, Vectors and Motion in Two Dimensions, Forces and Newton's Laws of Motion, Applying Newton's Laws, Circular Motion, Orbits, and Gravity, Rotational Motion, Equilibrium and Elasticity. Conservation Laws: Momentum, Energy and Work, Using Energy. Properties of Matter: Thermal Properties Of Matter, Fluids. Oscillations and Waves: Oscillations, Traveling Waves and Sound, Superposition and Standing Waves. For all readers interested in algebra-based college physics.

Feynman's Rainbow: A Search for Beauty in Physics and in Life


Leonard Mlodinow - 2004
    Drawing on transcripts from their meetings during their time together at Cal Tech, Mlodinow shares Feynman's provocative thoughts and observations. At once a moving portrait of a friendship and an affecting account of Feynman's final, creative years, this book celebrates the inspiring legacy of one of the greatest thinkers of our time.

What on Earth Happened?... In Brief: The Planet, Life & People from the Big Bang to the Present Day


Christopher Lloyd - 2009
    In this thrill-ride across millennia and continents, the complete history of the planet comes to life: from the Earth's fiery birth to its near-obliteration in the Triassic period, and from the first signs of human life to the tentative future of a world with a burgeoning population and a global warming crisis. Covering a wide range of topics including astrophysics, zoology, and sociology, and complete with maps and illustrations, What on Earth Happened? In Brief is the endlessly entertaining story of the planet, life, and people.

The Void


Frank Close - 2007
    Readers will find an enlightening history of the vacuum: how the efforts to make a better vacuum led to the discovery of the electron; the understanding that the vacuum is filled with fields; the ideas of Newton, Mach, and Einstein on the nature of space and time; the mysterious aether and how Einstein did away with it; and the latest ideas that the vacuum is filled with the Higgs field. The story ranges from the absolute zero of temperature and the seething vacuum of virtual particles and anti-particles that fills space, to the extreme heat and energy of the early universe. It compares the ways that substances change from gas to liquid and solid with the way that the vacuum of our universe has changed as the temperature dropped following the Big Bang. It covers modern ideas that there may be more dimensions to the void than those that we currently are aware of and even that our universe is but one in a multiverse. The Void takes us inside a field of science that may ultimately provide answers to some of cosmology's most fundamental questions: what lies outside the universe, and, if there was once nothing, then how did the universe begin?

Can Reindeer Fly? The Science of Christmas


Roger Highfield - 1998
    With chapters ranging from Christmas astrology to the dreaded sprout this is the essential Christmas purchase.

The Construction of Modern Science: Mechanisms and Mechanics


Richard S. Westfall - 1977
    The Platonic-Pythagorean tradition looked on nature in geometric terms with the conviction that the cosmos was constructed according to the principles of mathematical order, while the mechanical philosophy conceived of nature as a huge machine and sought to explain the hidden mechanisms behind phenomena. Pursuing different goals, these two movements of thought tended to conflict with each other, and more than the obviously mathematical sciences were affected - the influence spread as far as chemistry and the life sciences. As this book demonstrates, the full fruition of the scientific revolution required a resolution of the tension between the two dominant trends.

An Introduction to Modern Cosmology


Andrew Liddle - 2003
    The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observational situation. This fully revised edition of a bestseller takes an approach which is grounded in physics with a logical flow of chapters leading the reader from basic ideas of the expansion described by the Friedman equations to some of the more advanced ideas about the early universe. It also incorporates up-to-date results from the Planck mission, which imaged the anisotropies of the Cosmic Microwave Background radiation over the whole sky. The Advanced Topic sections present subjects with more detailed mathematical approaches to give greater depth to discussions. Student problems with hints for solving them and numerical answers are embedded in the chapters to facilitate the reader's understanding and learning. Cosmology is now part of the core in many degree programs. This current, clear and concise introductory text is relevant to a wide range of astronomy programs worldwide and is essential reading for undergraduates and Masters students, as well as anyone starting research in cosmology.