Linear Algebra Done Right


Sheldon Axler - 1995
    The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.

Compilers: Principles, Techniques, and Tools


Alfred V. Aho - 1986
    The authors present updated coverage of compilers based on research and techniques that have been developed in the field over the past few years. The book provides a thorough introduction to compiler design and covers topics such as context-free grammars, fine state machines, and syntax-directed translation.

Concrete Mathematics: A Foundation for Computer Science


Ronald L. Graham - 1988
    "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

The Hundred-Page Machine Learning Book


Andriy Burkov - 2019
    During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.

Probabilistic Robotics


Sebastian Thrun - 2005
    Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.

Musicophilia: Tales of Music and the Brain


Oliver Sacks - 2007
    In Musicophilia, he shows us a variety of what he calls “musical misalignments.” Among them: a man struck by lightning who suddenly desires to become a pianist at the age of forty-two; an entire group of children with Williams syndrome, who are hypermusical from birth; people with “amusia,” to whom a symphony sounds like the clattering of pots and pans; and a man whose memory spans only seven seconds-for everything but music. Illuminating, inspiring, and utterly unforgettable, Musicophilia is Oliver Sacks’ latest masterpiece.

An Introduction to Genetic Algorithms


Melanie Mitchell - 1996
    This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics--particularly in machine learning, scientific modeling, and artificial life--and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting general purpose nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

Mind Wide Open: Your Brain and the Neuroscience of Everyday Life


Steven Johnson - 1999
    He asks: How do we "read" other people?What is the neurochemistry behind love and sex?What does it mean that the brain is teeming with powerful chemicals closely related to recreational drugs?Why does music move us to tears?Where do breakthrough ideas come from? Johnson answers these and many more questions arising from the events of our everyday lives. You do not have to be a neuroscientist to wonder, for example, why do you smile? And why do you sometimes smile inappropriately, even if you don't want to? How do others read your inappropriate smile? How does such interplay occur neurochemically, and what, if anything, can you do about it? Fascinating and rewarding, Mind Wide Open speaks to brain buffs, self-obsessed neurotics, barstool psychologists, mystified parents, grumpy spouses, exasperated managers, and anyone who enjoys speculating and gossiping about the motivations and behaviors of other human beings. Steven Johnson shows us the transformative power of understanding brain science and offers new modes of introspection and tools for better parenting, better relationships, and better living.

Learning From Data: A Short Course


Yaser S. Abu-Mostafa - 2012
    Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.

Pattern Classification


David G. Stork - 1973
    Now with the second edition, readers will find information on key new topics such as neural networks and statistical pattern recognition, the theory of machine learning, and the theory of invariances. Also included are worked examples, comparisons between different methods, extensive graphics, expanded exercises and computer project topics.An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

The Future of the Mind: The Scientific Quest to Understand, Enhance, and Empower the Mind


Michio Kaku - 2014
    For the first time in history, the secrets of the living brain are being revealed by a battery of high tech brain scans devised by physicists. Now what was once solely the province of science fiction has become a startling reality. Recording memories, telepathy, videotaping our dreams, mind control, avatars, and telekinesis are not only possible; they already exist. The Future of the Mind gives us an authoritative and compelling look at the astonishing research being done in top laboratories around the world—all based on the latest advancements in neuroscience and physics. One day we might have a "smart pill" that can enhance our cognition; be able to upload our brain to a computer, neuron for neuron; send thoughts and emotions around the world on a "brain-net"; control computers and robots with our mind; push the very limits of immortality; and perhaps even send our consciousness across the universe. Dr. Kaku takes us on a grand tour of what the future might hold, giving us not only a solid sense of how the brain functions but also how these technologies will change our daily lives. He even presents a radically new way to think about "consciousness" and applies it to provide fresh insight into mental illness, artificial intelligence and alien consciousness. With Dr. Kaku's deep understanding of modern science and keen eye for future developments, The Future of the Mind is a scientific tour de force--an extraordinary, mind-boggling exploration of the frontiers of neuroscience.

Algorithms to Live By: The Computer Science of Human Decisions


Brian Christian - 2016
    What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us.In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.