Book picks similar to
Step By Step Programming With Base Sas Software by Jennifer L. Wilson
sas-start
data-science
programming
Head First HTML5 Programming
Eric Freeman - 2011
Sure, HTML started as a mere markup language, but more recently HTML’s put on some major muscle. Now we’ve got a language tuned for building web applications with Web storage, 2D drawing, offline support, sockets and threads, and more. And to speak this language you’ve got to go beyond HTML5 markup and into the world of the DOM, events, and JavaScript APIs. Now you probably already know all about HTML markup (otherwise known as structure) and you know all aboutCSS style (presentation), but what you’ve been missing is JavaScript (behavior). If all you know about are structure and presentation, you can create some great looking pages, but they’re still just pages. When you add behavior with JavaScript, you can create an interactive experience; even better, you can create full blown web applications.Head First HTML5 Programming is your ultimate tour guide to creating web applications with HTML5 and JavaScript, and we give you everything you need to know to build them, including: how to add interactivity to your pages, how to communicate with the world of Web services, and how to use the great new APIs being developed for HTML5. Here are just some of the things you’ll learn in Head First HTML5 Programing:Learn how to make your pages truly interactive by using the power of the DOM.Finally understand how JavaScript works and take yourself from novice to well-informed in just a few chapters.Learn how JavaScript APIs fit into the HTML5 ecosystem, and how to use any API in your web pages.Use the Geolocation API to know where your users are.Bring out your inner artist with Canvas, HTML5’s new 2D drawing surface.Go beyond just plugging a video into your pages, and create custom video experiences.Learn the secret to grabbing five megabytes of storage in every user’s browser.Improve your page’s responsiveness and performance with Web workers.And much more.
Sams Teach Yourself SQL™ in 10 Minutes
Ben Forta - 1999
It also covers MySQL, and PostgreSQL. It contains examples which have been tested against each SQL platform, with incompatibilities or platform distinctives called out and explained.
I Heart Logs: Event Data, Stream Processing, and Data Integration
Jay Kreps - 2014
Even though most engineers don't think much about them, this short book shows you why logs are worthy of your attention.Based on his popular blog posts, LinkedIn principal engineer Jay Kreps shows you how logs work in distributed systems, and then delivers practical applications of these concepts in a variety of common uses--data integration, enterprise architecture, real-time stream processing, data system design, and abstract computing models.Go ahead and take the plunge with logs; you're going love them.Learn how logs are used for programmatic access in databases and distributed systemsDiscover solutions to the huge data integration problem when more data of more varieties meet more systemsUnderstand why logs are at the heart of real-time stream processingLearn the role of a log in the internals of online data systemsExplore how Jay Kreps applies these ideas to his own work on data infrastructure systems at LinkedIn
Data Driven
D.J. Patil - 2015
It requires you to develop a data culture that involves people throughout the organization. In this O’Reilly report, DJ Patil and Hilary Mason outline the steps you need to take if your company is to be truly data-driven—including the questions you should ask and the methods you should adopt.
You’ll not only learn examples of how Google, LinkedIn, and Facebook use their data, but also how Walmart, UPS, and other organizations took advantage of this resource long before the advent of Big Data. No matter how you approach it, building a data culture is the key to success in the 21st century.
You’ll explore:
Data scientist skills—and why every company needs a Spock
How the benefits of giving company-wide access to data outweigh the costs
Why data-driven organizations use the scientific method to explore and solve data problems
Key questions to help you develop a research-specific process for tackling important issues
What to consider when assembling your data team
Developing processes to keep your data team (and company) engaged
Choosing technologies that are powerful, support teamwork, and easy to use and learn
Lifehacked: How One Family from the Slums Made Millions Selling Apps
Allen Wong - 2012
He became a self-made millionaire before he was 25.But, life wasn't always this grand for him. He was the only person in his family earning an income. And, he came from an oppressed family that grew up in the slums. Regardless, the apps he published were downloaded by over 15 million people.His apps have been featured in many places, including Wired.com, NBC News, and CNN. Now he's sharing the story on how he did it, the crises he struggled with, and what his father taught him to be successful.App companies have paid him thousands of dollars for consultant work, and he has helped them increase their download numbers by over 1000%. One of those apps was downloaded by over 100,000 users in one day. And now he is revealing his marketing secrets for the first time in this book.Note: This book was written with non-technical people in mind. The book covers both life and entrepreneurial lessons, and not all of the book is about app development.
Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers
John MacCormick - 2012
A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.
Applied Predictive Modeling
Max Kuhn - 2013
Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f
R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics
Paul Teetor - 2011
The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform other basic functionsInput and output dataTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals, and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your dataWonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time.--Jeffrey Ryan, software consultant and R package author
Elements of Programming Interviews in Python: The Insiders' Guide
Adnan Aziz - 2016
See the website for links to the C++ and Java version.Have you ever...Wanted to work at an exciting futuristic company?Struggled with an interview problem thatcould have been solved in 15 minutes?Wished you could study real-world computing problems?If so, you need to read Elements of Programming Interviews (EPI).EPI is your comprehensive guide to interviewing for software development roles.The core of EPI is a collection of over 250 problems with detailed solutions. The problems are representative of interview questions asked at leading software companies. The problems are illustrated with 200 figures, 300 tested programs, and 150 additional variants.The book begins with a summary of the nontechnical aspects of interviewing, such as strategies for a great interview, common mistakes, perspectives from the other side of the table, tips on negotiating the best offer, and a guide to the best ways to use EPI. We also provide a summary of data structures, algorithms, and problem solving patterns.Coding problems are presented through a series of chapters on basic and advanced data structures, searching, sorting, algorithm design principles, and concurrency. Each chapter stars with a brief introduction, a case study, top tips, and a review of the most important library methods. This is followed by a broad and thought-provoking set of problems.A practical, fun approach to computer science fundamentals, as seen through the lens of common programming interview questions. Jeff Atwood/Co-founder, Stack Overflow and Discourse
Learning OpenCV: Computer Vision with the OpenCV Library
Gary Bradski - 2008
Freeman, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyLearning OpenCV puts you in the middle of the rapidly expanding field of computer vision. Written by the creators of the free open source OpenCV library, this book introduces you to computer vision and demonstrates how you can quickly build applications that enable computers to "see" and make decisions based on that data. Computer vision is everywhere-in security systems, manufacturing inspection systems, medical image analysis, Unmanned Aerial Vehicles, and more. It stitches Google maps and Google Earth together, checks the pixels on LCD screens, and makes sure the stitches in your shirt are sewn properly. OpenCV provides an easy-to-use computer vision framework and a comprehensive library with more than 500 functions that can run vision code in real time.Learning OpenCV will teach any developer or hobbyist to use the framework quickly with the help of hands-on exercises in each chapter. This book includes:A thorough introduction to OpenCV Getting input from cameras Transforming images Segmenting images and shape matching Pattern recognition, including face detection Tracking and motion in 2 and 3 dimensions 3D reconstruction from stereo vision Machine learning algorithms Getting machines to see is a challenging but entertaining goal. Whether you want to build simple or sophisticated vision applications, Learning OpenCV is the book you need to get started.
Hands-On Programming with R: Write Your Own Functions and Simulations
Garrett Grolemund - 2014
With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools.RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time.Work hands-on with three practical data analysis projects based on casino gamesStore, retrieve, and change data values in your computer's memoryWrite programs and simulations that outperform those written by typical R usersUse R programming tools such as if else statements, for loops, and S3 classesLearn how to write lightning-fast vectorized R codeTake advantage of R's package system and debugging toolsPractice and apply R programming concepts as you learn them
Statistics Done Wrong: The Woefully Complete Guide
Alex Reinhart - 2013
Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.
Introduction to Algorithms
Thomas H. Cormen - 1989
Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.
Algorithms of the Intelligent Web
Haralambos Marmanis - 2009
They use powerful techniques to process information intelligently and offer features based on patterns and relationships in data. Algorithms of the Intelligent Web shows readers how to use the same techniques employed by household names like Google Ad Sense, Netflix, and Amazon to transform raw data into actionable information.Algorithms of the Intelligent Web is an example-driven blueprint for creating applications that collect, analyze, and act on the massive quantities of data users leave in their wake as they use the web. Readers learn to build Netflix-style recommendation engines, and how to apply the same techniques to social-networking sites. See how click-trace analysis can result in smarter ad rotations. All the examples are designed both to be reused and to illustrate a general technique- an algorithm-that applies to a broad range of scenarios.As they work through the book's many examples, readers learn about recommendation systems, search and ranking, automatic grouping of similar objects, classification of objects, forecasting models, and autonomous agents. They also become familiar with a large number of open-source libraries and SDKs, and freely available APIs from the hottest sites on the internet, such as Facebook, Google, eBay, and Yahoo.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
Copying and Pasting from Stack Overflow
Vinit Nayak - 2016
Mastering this art will not only make you the most desired developer in the market, but it will transform the craziest deadline into "Consider it done, Sir".