Book picks similar to
How to Count to Infinity by Marcus du Sautoy
mathematics
non-fiction
science
maths
Wonders Beyond Numbers: A Brief History of All Things Mathematical
Johnny Ball - 2017
By introducing us to the major characters and leading us through many historical twists and turns, Johnny slowly unravels the tale of how humanity built up a knowledge and understanding of shapes, numbers and patterns from ancient times, a story that leads directly to the technological wonderland we live in today. As Galileo said, 'Everything in the universe is written in the language of mathematics', and Wonders Beyond Numbers is your guide to this language.Mathematics is only one part of this rich and varied tale; we meet many fascinating personalities along the way, such as a mathematician who everyone has heard of but who may not have existed; a Greek philosopher who made so many mistakes that many wanted his books destroyed; a mathematical artist who built the largest masonry dome on earth, which builders had previously declared impossible; a world-renowned painter who discovered mathematics and decided he could no longer stand the sight of a brush; and a philosopher who lost his head, but only after he had died.Enriched with tales of colourful personalities and remarkable discoveries, there is also plenty of mathematics for keen readers to get stuck into. Written in Johnny Ball's characteristically light-hearted and engaging style, this book is packed with historical insight and mathematical marvels; join Johnny and uncover the wonders found beyond the numbers.
Linear Algebra
Kenneth M. Hoffman - 1971
Linear Equations; Vector Spaces; Linear Transformations; Polynomials; Determinants; Elementary canonical Forms; Rational and Jordan Forms; Inner Product Spaces; Operators on Inner Product Spaces; Bilinear Forms For all readers interested in linear algebra.
Mathematics: From the Birth of Numbers
Jan Gullberg - 1997
The book is unique among popular books on mathematics in combining an engaging, easy-to-read history of the subject with a comprehensive mathematical survey text. Intended, in the author's words, "for the benefit of those who never studied the subject, those who think they have forgotten what they once learned, or those with a sincere desire for more knowledge," it links mathematics to the humanities, linguistics, the natural sciences, and technology.Contains more than 1000 original technical illustrations, a multitude of reproductions from mathematical classics and other relevant works, and a generous sprinkling of humorous asides, ranging from limericks and tall stories to cartoons and decorative drawings.
The Cartoon Introduction to Statistics
Grady Klein - 2013
Employing an irresistible cast of dragon-riding Vikings, lizard-throwing giants, and feuding aliens, the renowned illustrator Grady Klein and the award-winning statistician Alan Dabney teach you how to collect reliable data, make confident statements based on limited information, and judge the usefulness of polls and the other numbers that you're bombarded with every day. If you want to go beyond the basics, they've created the ultimate resource: "The Math Cave," where they reveal the more advanced formulas and concepts.Timely, authoritative, and hilarious, The Cartoon Introduction to Statistics is an essential guide for anyone who wants to better navigate our data-driven world.
Godel: A Life Of Logic, The Mind, And Mathematics
John L. Casti - 2000
His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.
On Formally Undecidable Propositions of Principia Mathematica and Related Systems
Kurt Gödel - 1992
Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.
Soccermatics: Mathematical Adventures in the Beautiful Game
David Sumpter - 2016
How to make sense of them? The answer lies in mathematical modeling, a science with applications in a host of biological systems. Soccermatics brings the two together in a fascinating, mind-bending synthesis.What's the similarity between an ant colony and Total Football, Dutch style? How is the Barcelona midfield linked geometrically? And how can we relate the mechanics of a Mexican Wave to the singing of cicadas in an Australian valley? Welcome to the world of mathematical modeling, expressed brilliantly by David Sumpter through the prism of soccer. Soccer is indeed more than a game and this book is packed with game theory. After reading it, you will forever watch the game with new eyes.
In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation
William J. Cook - 2011
In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets.In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.
The Adventures of Penrose the Mathematical Cat
Theoni Pappas - 1997
Penrose, a cat with a knack for math, takes children on an adventurous tour of mathematical concepts from fractals to infinity.
Zero: The Biography of a Dangerous Idea
Charles Seife - 2000
For centuries, the power of zero savored of the demonic; once harnessed, it became the most important tool in mathematics. Zero follows this number from its birth as an Eastern philosophical concept to its struggle for acceptance in Europe and its apotheosis as the mystery of the black hole. Today, zero lies at the heart of one of the biggest scientific controversies of all time, the quest for the theory of everything. Elegant, witty, and enlightening, Zero is a compelling look at the strangest number in the universe and one of the greatest paradoxes of human thought.
How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics
Eugenia Cheng - 2015
Of course, it’s not all cooking; we’ll also run the New York and Chicago marathons, pay visits to Cinderella and Lewis Carroll, and even get to the bottom of a tomato’s identity as a vegetable. This is not the math of our high school classes: mathematics, Cheng shows us, is less about numbers and formulas and more about how we know, believe, and understand anything, including whether our brother took too much cake.At the heart of How to Bake Pi is Cheng’s work on category theory—a cutting-edge “mathematics of mathematics.” Cheng combines her theory work with her enthusiasm for cooking both to shed new light on the fundamentals of mathematics and to give readers a tour of a vast territory no popular book on math has explored before. Lively, funny, and clear, How to Bake Pi will dazzle the initiated while amusing and enlightening even the most hardened math-phobe.
Mathematics for the Million: How to Master the Magic of Numbers
Lancelot Hogben - 1937
His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.
The Number Devil: A Mathematical Adventure
Hans Magnus Enzensberger - 1997
As we dream with him, we are taken further and further into mathematical theory, where ideas eventually take flight, until everyone--from those who fumble over fractions to those who solve complex equations in their heads--winds up marveling at what numbers can do.Hans Magnus Enzensberger is a true polymath, the kind of superb intellectual who loves thinking and marshals all of his charm and wit to share his passions with the world. In The Number Devil, he brings together the surreal logic of Alice in Wonderland and the existential geometry of Flatland with the kind of math everyone would love, if only they had a number devil to teach them.
Calculus, Volume 2: Multi-Variable Calculus and Linear Algebra with Applications
Tom M. Apostol - 1962
Integration is treated before differentiation -- this is a departure from most modern texts, but it is historically correct, and it is the best way to establish the true connection between the integral and the derivative. Proofs of all the important theorems are given, generally preceded by geometric or intuitive discussion. This
Second Edition
introduces the mean-value theorems and their applications earlier in the text, incorporates a treatment of linear algebra, and contains many new and easier exercises. As in the first edition, an interesting historical introduction precedes each important new concept.
A History of π
Petr Beckmann - 1970
Petr Beckmann holds up this mirror, giving the background of the times when pi made progress -- and also when it did not, because science was being stifled by militarism or religious fanaticism.