Edge of the Universe A Voyage to the Cosmic Horizon and Beyond


Paul Halpern - 2012
    Yet recent theories suggest that there is far more to the universe than what our instruments record--in fact, it could be infinite. Colossal flows of galaxies, large empty regions called voids, and other unexplained phenomena offer clues that our own "bubble universe" could be part of a greater realm called the multiverse. How big is the observable universe? What it is made of? What lies beyond it? Was there a time before the Big Bang? Could space have unseen dimensions? In this book, physicist and science writer Paul Halpern explains what we know--and what we hope to soon find out--about our extraordinary cosmos.Explains what we know about the Big Bang, the accelerating universe, dark energy, dark flow, and dark matter to examine some of the theories about the content of the universe and why its edge is getting farther away from us fasterExplores the idea that the observable universe could be a hologram and that everything that happens within it might be written on its edgeWritten by physicist and popular science writer Paul Halpern, whose other books include "Collider: The Search for the World's Smallest Particles," and "What's Science Ever Done For Us: What the Simpsons Can Teach Us About Physics, Robots, Life, and the Universe"

Cosmos


Giles Sparrow - 2006
    "Cosmos" explores the celestial panorama one step at a time and by illustrating the planets, moons, stars, nebulae, white dwarfs, black holes and other exotica that populate the heavens with over 450 of the most spectacular and up-to-date photographs and illustrations.

Starlight Detectives: How Astronomers, Inventors, and Eccentrics Discovered the Modern Universe


Alan W. Hirshfeld - 2014
    . . . Readers will never again look into the night sky the same way.” —MICHAEL SHERMER, author of The Believing Brain on Parallax: The Race to Measure the CosmosIn 1930, Edwin Hubble announced the greatest discovery in the history of astronomy since Galileo first turned a telescope to the heavens. The galaxies, previously believed to float serenely in the void, are in fact hurtling apart at an incredible speed; the universe is expanding. This stunning discovery was the culmination of a decades-long arc of scientific and technical advancement. In its shadow lies an untold, yet equally fascinating, backstory whose cast of characters illuminates the gritty, hard-won nature of scientific progress.The path to a broader mode of cosmic observation was blazed by a cadre of 19th-century amateur astronomers and inventors, galvanized by the advent of photography, spectral analysis, and innovative technology to create the entirely new field of astrophysics. From William Bond, who turned his home into a functional observatory, to John and Henry Draper, a father and son team who were trailblazers of astrophotography and spectroscopy, to geniuses of invention such as Léon Foucault, and George Hale, who founded the Mount Wilson Observatory, Hirshfeld reveals the incredible stories—and the ambitious dreamers—behind the birth of modern astronomy.Alan Hirshfeld, Professor of Physics at the University of Massachusetts Dartmouth and an Associate of the Harvard College Observatory, is the author of Parallax: The Race to Measure the Cosmos, The Electric Life of Michael Faraday, and Eureka Man: The Life and Legacy of Archimedes.

Neutrino


Frank Close - 2010
    These tiny, ghostly particles are formed by the billions in stars and pass through us constantly, unseen, at almost the speed of light. Yet half a century after their discovery, we still know less about them than all the other varieties of matter that have ever been seen. In this engaging, concise volume, renowned scientist and popular writer Frank Close gives a vivid account of the discovery of neutrinos and our growing understanding of their significance, also touching on some speculative ideas concerning the possible uses of neutrinos and their role in the early universe. Close begins with the early history of the discovery of radioactivity by Henri Becquerel and Marie and Pierre Curie, the early model of the atom by Ernest Rutherford, and problems with these early atomic models, and Wolfgang Pauli's solution to that problem by inventing the concept of neutrino (named by Enrico Fermi, neutrino being Italian for little neutron). The book describes how the confirmation of Pauli's theory didn't occur until 1956, when Clyde Cowan and Fred Reines detected neutrinos, and reveals that the first natural neutrinos were finally detected by Reines in 1965 (before that, they had only been detected in reactors or accelerators). Close takes us to research experiments miles underground that are able to track neutrinos' fleeting impact as they pass through vast pools of cadmium chloride and he explains why they are becoming of such interest to cosmologists--if we can track where a neutrino originated we will be looking into the far distant reaches of the universe. In telling the story of the neutrino, Close offers a fascinating portrait of a strand of modern physics that sheds light on everything from the workings of the atom and the power of the sun.

The Character of Physical Law


Richard P. Feynman - 1964
    He maintains at the outset that the importance of a physical law isn't "how clever we are to have found it out, but...how clever nature is to pay attention to it" & tends his discussions toward a final exposition of the elegance & simplicity of all scientific laws. Rather than an essay on the most significant achievements in modern science, The Character of Physical Law is a statement of what is most remarkable in nature. His enlightened approach, wit & enthusiasm make this a memorable exposition of the scientist's craft. The Law of Gravitation is the principal example. Relating the details of its discovery & stressing its mathematical character, he uses it to demonstrate the essential interaction of mathematics & physics. He views mathematics as the key to any system of scientific laws, suggesting that if it were possible to fill out the structure of scientific theory completely, the result would be an integrated set of axioms. The principles of conservation, symmetry & time-irreversibility are then considered in relation to developments in classical & modern physics. In his final lecture he develops his own analysis of the process & future of scientific discovery. Like any set of oral reflections, The Character of Physical Law has value as a demonstration of a mind in action. The reader is particularly lucky in Feynman. One of the most eminent & imaginative modern physicists, he was Professor of Theoretical Physics at the California Institute of Technology until his death in 1988. He's best known for work on the quantum theory of the electromagnetic field, as well as for later research in the field of low-temperature physics. In 1954 he received the Albert Einstein Award for an "outstanding contribution to knowledge in mathematical & physical sciences"; in 1965 he was appointed to Foreign Membership in the Royal Society & was awarded the Nobel Prize.

Geons, Black Holes and Quantum Foam: A Life in Physics


John Archibald Wheeler - 1998
    John Archibald Wheeler's fascinating life brings us face to face with the central characters and discoveries of modern physics. He was the first American to learn of the discovery of nuclear fission, later coined the term "black hole," led a renaissance in gravitation physics, and helped to build Princeton University into a mecca for physicists.From nuclear physics, to quantum theory, to relativity and gravitation, Wheeler's work has set the trajectory of research for half a century. His career has brought him into contact with the most brilliant minds of his field; Fermi, Bethe, Rabi, Teller, Oppenheimer, and Wigner are among those he called colleagues and friends. In this rich autobiography, Wheeler reveals in fascinating detail the excitement of each discovery, the character of each colleague, and the underlying passion for knowledge that drives him still.

The Universe Speaks in Numbers: How Modern Maths Reveals Nature's Deepest Secrets


Graham Farmelo - 2019
    No less miraculous, the fundamental laws of the universe can be written in the language of advanced mathematics.Searching for these laws, physicists have found themselves developing ambitious mathematical ideas without experiment as their guide. In The Universe Speaks in Numbers, Graham Farmelo demonstrates how today's greatest scientific minds are working in a tradition that dates back to Newton. He takes us on an adventure from the Enlightenment, through the breakthroughs of Einstein and Dirac, to the contemporary physicists and mathematicians who are shedding fascinating light on each other's disciplines. As Farmelo shows, this blossoming relationship between mathematics and physics is responsible for huge, redefining advances in our understanding of reality, space and time. Always lively, vivid and authoritative, Farmelo guides the reader through the most thrilling and controversial developments in contemporary thought. LISTEN TO THE ACCOMPANYING PODCAST featuring interviews with leading scientists at www.grahamfarmelo.com 'A superbly written, riveting book. In elegant prose, and using virtually no equations, Farmelo describes the ongoing quest of great thinkers to understand the bedrock nature of reality' Martin Rees, Astronomer Royal, Emeritus Professor of Cosmology and Astrophysics at the University of Cambridge'I am overcome with admiration for this book's range and profundity ... An amazing achievement' Michael Frayn, award-winning writer of Copenhagen 'Masterful ... a riveting account of one of the greatest stories of our time' Nima Arkani-Hamed, Professor at the Institute of Advanced Study, Princeton

The Beginning and the End of Everything: From the Big Bang to the End of the Universe


Paul Parsons - 2018
    Authoritative and engaging, Paul Parsons takes us on a rollercoaster ride through billions of light years to tell the story of the Big Bang, from birth to death.13.8 billion years ago, something incredible happened. Matter, energy, space and time all suddenly burst into existence in a cataclysmic event that’s come to be known as the Big Bang. It was the birth of our universe. What started life smaller than the tiniest subatomic particle is now unimaginably vast and plays home to trillions of galaxies. The formulation of the Big Bang theory is a story that combines some of the most far-reaching concepts in fundamental physics with equally profound observations of the cosmos.From our realization that we are on a planet orbiting a star in one of many galaxies, to the discovery that our universe is expanding, to the groundbreaking theories of Einstein that laid the groundwork for the Big Bang cosmology of today – as each new discovery deepens our understanding of the origins of our universe, a clearer picture is forming of how it will all end. Will we ultimately burn out or fade away? Could the end simply signal a new beginning, as the universe rebounds into a fresh expanding phase? And was our Big Bang just one of many, making our cosmos only a small part of a sprawling multiverse of parallel universes?

Astronomy


Andrew Fraknoi - 2012
    The book begins with relevant scientific fundamentals and progresses through an exploration of the solar system, stars, galaxies, and cosmology. The Astronomy textbook builds student understanding through the use of relevant analogies, clear and non-technical explanations, and rich illustrations. Mathematics is included in a flexible manner to meet the needs of individual instructors.

The Copernican Revolution: Planetary Astronomy in the Development of Western Thought


Thomas S. Kuhn - 1957
    Few episodes in the development of scientific theory show so clearly how the solution to a highly technical problem can alter our basic thought processes and attitudes. Understanding the processes which underlay the Revolution gives us a perspective, in this scientific age, from which to evaluate our own beliefs more intelligently. With a constant keen awareness of the inseparable mixture of its technical, philosophical, and humanistic elements, Thomas S. Kuhn displays the full scope of the Copernican Revolution as simultaneously an episode in the internal development of astronomy, a critical turning point in the evolution of scientific thought, and a crisis in Western man's concept of his relation to the universe and to God.The book begins with a description of the first scientific cosmology developed by the Greeks. Mr. Kuhn thus prepares the way for a continuing analysis of the relation between theory and observation and belief. He describes the many functions--astronomical, scientific, and nonscientific--of the Greek concept of the universe, concentrating especially on the religious implications. He then treats the intellectual, social, and economic developments which nurtured Copernicus' break with traditional astronomy. Although many of these developments, including scholastic criticism of Aristotle's theory of motion and the Renaissance revival of Neoplatonism, lie entirely outside of astronomy, they increased the flexibility of the astronomer's imagination. That new flexibility is apparent in the work of Copernicus, whose De Revolutionibus Orbium Coelestium (On the Revolutions of the Heavenly Spheres) is discussed in detail both for its own significance and as a representative scientific innovation.With a final analysis of Copernicus' life work--its reception and its contribution to a new scientific concept of the universe--Mr. Kuhn illuminates both the researches that finally made the heliocentric arrangement work, and the achievements in physics and metaphysics that made the planetary earth an integral part of Newtonian science. These are the developments that once again provided man with a coherent and self-consistent conception of the universe and of his own place in it.This is a book for any reader interested in the evolution of ideas and, in particular, in the curious interplay of hypothesis and experiment which is the essence of modern science. Says James Bryant Conant in his Foreword: "Professor Kuhn's handling of the subject merits attention, for...he points the way to the road which must be followed if science is to be assimilated into the culture of our times."

Endless Universe: Beyond the Big Bang


Paul J. Steinhardt - 2007
    Over the last three decades the theory has been repeatedly revised to address such issues as how galaxies and stars first formed and why the expansion of the universe is speeding up today. Furthermore, an explanation has yet to be found for what caused the Big Bang in the first place.In Endless Universe, Paul J. Steinhardt and Neil Turok, both distinguished theoretical physicists, present a bold new cosmology. Steinhardt and Turok “contend that what we think of as the moment of creation was simply part of an infinite cycle of titanic collisions between our universe and a parallel world” (Discover). They recount the remarkable developments in astronomy, particle physics, and superstring theory that form the basis for their groundbreaking “Cyclic Universe” theory. According to this theory, the Big Bang was not the beginning of time but the bridge to a past filled with endlessly repeating cycles of evolution, each accompanied by the creation of new matter and the formation of new galaxies, stars, and planets.Endless Universe provides answers to longstanding problems with the Big Bang model, while offering a provocative new view of both the past and the future of the cosmos.  It is a “theory that could solve the cosmic mystery” (USA Today).

Stephen Hawking's Universe: The Cosmos Explained


David Filkin - 1997
    Now, in everyday language, Stephen Hawking's Universe reveals step-by-step how we can all share his understanding of the cosmos, and our own place within it. Stargazing has never been the same since cosmologists discovered that galaxies are moving away from each other at an extraordinary speed. It was this understanding of the movement of galaxies that allowed scientists to develop a theory of how the universe was created—the Big Bang theory. Working with this theory, Stephen Hawking and other physicists felt challenged to come up with a scientific picture that would tackle the fundamental question: what is the nature of the universe? Stephen Hawking's Universe charts this work and provides simple explanations for phenomena that arouse our curiosity. This work is a voyage of discovery with an astonishing set of conclusions that will enable us to understand how matter can be produced from nothing at all and will provide us with an explanation for the basis of our existence and that of everything around us.

Infinite Powers: How Calculus Reveals the Secrets of the Universe


Steven H. Strogatz - 2019
    We wouldn’t have unraveled DNA or discovered Neptune or figured out how to put 5,000 songs in your pocket. Though many of us were scared away from this essential, engrossing subject in high school and college, Steven Strogatz’s brilliantly creative, down‑to‑earth history shows that calculus is not about complexity; it’s about simplicity. It harnesses an unreal number—infinity—to tackle real‑world problems, breaking them down into easier ones and then reassembling the answers into solutions that feel miraculous. Infinite Powers recounts how calculus tantalized and thrilled its inventors, starting with its first glimmers in ancient Greece and bringing us right up to the discovery of gravitational waves (a phenomenon predicted by calculus). Strogatz reveals how this form of math rose to the challenges of each age: how to determine the area of a circle with only sand and a stick; how to explain why Mars goes “backwards” sometimes; how to make electricity with magnets; how to ensure your rocket doesn’t miss the moon; how to turn the tide in the fight against AIDS. As Strogatz proves, calculus is truly the language of the universe. By unveiling the principles of that language, Infinite Powers makes us marvel at the world anew.

Project Orion: The True Story of the Atomic Spaceship


George Dyson - 2002
    41 illustrations.

Infinity in the Palm of Your Hand: Fifty Wonders That Reveal an Extraordinary Universe


Marcus Chown - 2018
    But our adventures in space, our deepening understanding of the quantum world and huge leaps in technology over the last century have also revealed a universe far stranger than we could ever have imagined.With brilliant clarity and wit, bestselling author Marcus Chown examines the profound science behind fifty remarkable scientific facts that help explain the vast complexities of our existence. Did you know that you could fit the whole human race in the volume of a sugar cube? Or that the electrical energy in a single mosquito is enough to cause a global mass extinction? Or that, out there in the cosmos, there are an infinite number of copies of you reading an infinite number of copies of this?Infinity in the Palm of Your Hand is a mind-bending journey through some of the most weird and wonderful facts about our universe, vividly illuminating the hidden truths that govern our everyday lives.