Cycles of Time: An Extraordinary New View of the Universe


Roger Penrose - 2010
    Roger Penrose—one of the most innovative mathematicians of our time—turns around this predominant picture of the universe’s “heat death,” arguing how the expected ultimate fate of our accelerating, expanding universe can actually be reinterpreted as the “Big Bang” of a new one.Along the way to this remarkable cosmological picture, Penrose sheds new light on basic principles that underlie the behavior of our universe, describing various standard and nonstandard cosmological models, the fundamental role of the cosmic microwave background, and the key status of black holes. Ideal for both the amateur astronomer and the advanced physicist—with plenty of exciting insights for each—Cycles of Time is certain to provoke and challenge.Intellectually thrilling and accessible, this is another essential guide to the universe from one of our preeminent thinkers.

Newton's Gift: How Sir Isaac Newton Unlocked the System of the World


David Berlinski - 2000
    Despite this, he has remained inaccessible to most modern readers, indisputably great but undeniably remote. In this witty, engaging, and often moving examination of Newton's life, David Berlinski recovers the man behind the mathematical breakthroughs. The story carries the reader from Newton's unremarkable childhood to his awkward undergraduate days at Cambridge through the astonishing year in which, working alone, he laid the foundation for his system of the world, his Principia Mathematica, and to the subsequent monumental feuds that poisoned his soul and wearied his supporters. An edifying appreciation of Newton's greatest accomplishment, Newton's Gift is also a touching celebration of a transcendent man.

The Quantum Theory of Fields: Volume I, Foundations


Steven Weinberg - 1995
    This is a two-volume work. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before, and emphasizing the reasons why such a theory should describe nature. After a brief historical outline, the book begins anew with the principles about which we are most certain, relativity and quantum mechanics, and the properties of particles that follow from these principles. Quantum field theory emerges from this as a natural consequence. The author presents the classic calculations of quantum electrodynamics in a thoroughly modern way, showing the use of path integrals and dimensional regularization. His account of renormalization theory reflects the changes in our view of quantum field theory since the advent of effective field theories. The book's scope extends beyond quantum electrodynamics to elementary particle physics, and nuclear physics. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Problems are included at the end of each chapter. This work will be an invaluable reference for all physicists and mathematicians who use quantum field theory, and it is also appropriate as a textbook for graduate students in this area.

How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics


James D. Stein - 2008
    In the four main sections of the book, Stein tells the stories of the mathematical thinkers who discerned some of the most fundamental aspects of our universe. From their successes and failures, delusions, and even duels, the trajectories of their innovations—and their impact on society—are traced in this fascinating narrative. Quantum mechanics, space-time, chaos theory and the workings of complex systems, and the impossibility of a "perfect" democracy are all here. Stein's book is both mind-bending and practical, as he explains the best way for a salesman to plan a trip, examines why any thought you could have is imbedded in the number π , and—perhaps most importantly—answers one of the modern world's toughest questions: why the garage can never get your car repaired on time.Friendly, entertaining, and fun, How Math Explains the World is the first book by one of California's most popular math teachers, a veteran of both "math for poets" and Princeton's Institute for Advanced Studies. And it's perfect for any reader wanting to know how math makes both science and the world tick.

Professor Maxwell’s Duplicitous Demon: The Life and Science of James Clerk Maxwell


Brian Clegg - 2019
    But ask a physicist and there’s no doubt that James Clerk Maxwell will be near the top of the list.  Maxwell, an unassuming Victorian Scotsman, explained how we perceive colour. He uncovered the way gases behave. And, most significantly, he transformed the way physics was undertaken in his explanation of the interaction of electricity and magnetism, revealing the nature of light and laying the groundwork for everything from Einstein’s special relativity to modern electronics.   Along the way, he set up one of the most enduring challenges in physics, one that has taxed the best minds ever since. ‘Maxwell’s demon’ is a tiny but thoroughly disruptive thought experiment that suggests the second law of thermodynamics, the law that governs the flow of time itself, can be broken. This is the story of a groundbreaking scientist, a great contributor to our understanding of the way the world works, and his duplicitous demon.

Quantum Enigma: Physics Encounters Consciousness


Bruce Rosenblum - 2006
    Can you believe that physical reality is created by our observation of it? Physicists were forced to this conclusion, the quantum enigma, by what they observed in their laboratories.Trying to understand the atom, physicists built quantum mechanics and found, to their embarrassment, that their theory intimately connects consciousness with the physical world. Quantum Enigma explores what that implies and why some founders of the theory became the foremost objectors to it. Schr�dinger showed that it absurdly allowed a cat to be in a superposition simultaneously dead and alive. Einstein derided the theory's spooky interactions. With Bell's Theorem, we now know Schr�dinger's superpositions and Einstein's spooky interactions indeed exist.Authors Bruce Rosenblum and Fred Kuttner explain all of this in non-technical terms with help from some fanciful stories and bits about the theory's developers. They present the quantum mystery honestly, with an emphasis on what is and what is not speculation.Physics' encounter with consciousness is its skeleton in the closet. Because the authors open the closet and examine the skeleton, theirs is a controversial book. Quantum Enigma's description of the experimental quantum facts, and the quantum theory explaining them, is undisputed. Interpreting what it all means, however, is controversial.Every interpretation of quantum physics encounters consciousness. Rosenblum and Kuttner therefore turn to exploring consciousness itself--and encounter quantum physics. Free will and anthropic principles become crucial issues, and the connection of consciousness with the cosmos suggested by some leading quantum cosmologists is mind-blowing.Readers are brought to a boundary where the particular expertise of physicists is no longer a sure guide. They will find, instead, the facts and hints provided by quantum mechanics and the ability to speculate for themselves.

An Introduction To Quantum Field Theory


Michael E. Peskin - 1994
    The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.

Physics, Volume 1


Robert Resnick - 1966
    The Fourth Edition of volumes 1 and 2 is concerned with mechanics and E&M/Optics. New features include: expanded coverage of classic physics topics, substantial increases in the number of in-text examples which reinforce text exposition, the latest pedagogical and technical advances in the field, numerical analysis, computer-generated graphics, computer projects and much more.

Time Travel and Warp Drives: A Scientific Guide to Shortcuts through Time and Space


Allen Everett - 2011
    Sci-fi makes it look so easy. Receive a distress call from Alpha Centauri? No problem: punch the warp drive and you're there in minutes. Facing a catastrophe that can't be averted? Just pop back in the timestream and stop it before it starts. But for those of us not lucky enough to live in a science-fictional universe, are these ideas merely flights of fancy—or could it really be possible to travel through time or take shortcuts between stars? Cutting-edge physics may not be able to answer those questions yet, but it does offer up some tantalizing possibilities. In Time Travel and Warp Drives, Allen Everett and Thomas A. Roman take readers on a clear, concise tour of our current understanding of the nature of time and space—and whether or not we might be able to bend them to our will. Using no math beyond high school algebra, the authors lay out an approachable explanation of Einstein's special relativity, then move through the fundamental differences between traveling forward and backward in time and the surprising theoretical connection between going back in time and traveling faster than the speed of light. They survey a variety of possible time machines and warp drives, including wormholes and warp bubbles, and, in a dizzyingly creative chapter, imagine the paradoxes that could plague a world where time travel was possible—killing your own grandfather is only one of them! Written with a light touch and an irrepressible love of the fun of sci-fi scenarios—but firmly rooted in the most up-to-date science, Time Travel and Warp Drives will be a delightful discovery for any science buff or armchair chrononaut.

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles


Robert M. Eisberg - 1974
    Emphasizes the applications of theory, and contains new material on particle physics, electron-positron annihilation in solids and the Mossbauer effect. Includes new appendices on such topics as crystallography, Fourier Integral Description of a Wave Group, and Time-Independent Perturbation Theory.

The Ultimate Fate Of The Universe


Jamal Nazrul Islam - 1983
    To understand the universe in the far future, we must first describe its present state and structure on the grand scale, and how its present properties arose. Dr Islam explains these topics in an accessible way in the first part of the book. From this background he speculates about the future evolution of the universe and predicts the major changes that will occur. The author has largely avoided mathematical formalism and therefore the book is well suited to general readers with a modest background knowledge of physics and astronomy.

The Best American Science Writing 2006


Atul Gawande - 2006
    Together these twenty-one articles on a wide range of today's most leading topics in science, from Dennis Overbye, Jonathan Weiner, and Richard Preston, among others, represent the full spectrum of scientific inquiry, proving once again that "good science writing is evidently plentiful" (American Scientist).

In Search of the Edge of Time: Black Holes, White Holes, Wormholes


John Gribbin - 1992
    Physicists who formerly shunned these astrophysical eccentricities have begun to theorize about them and search for the physical proof of their existence with the zeal of converts. The unavoidable conclusion of this research is that these rips in the fabric of spacetime are not only real, they might actually provide a passage to other universes and travel through time. This book tells the story of the theories and discoveries that have led scientists to these conclusions.

The Ghost in the Atom: A Discussion of the Mysteries of Quantum Physics


Paul C.W. Davies - 1986
    Niels Bohr's dictum bears witness to the bewildering impact of quantum theory, flying in the face of classical physics and dramatically transforming scientists' outlook on our relationship with the material world. In this book Paul Davies interviews eight physicists involved in debating and testing the theory, with radically different views of its significance.

The Story Of Thought


Bryan Magee - 1998
    Magee does a great job of balancing the various aspects of the history of philosophy that may be of interest to different readers. Each philosopher is covered in a section of a few pages outlining the thinker's major ideas, but also containing sidebars with famous quotes, major works, related topics and historical notes. The book is organized chronologically and philosophers are grouped into intellectual movements, introduced and expanded by insets. This format allows the book to be used as a point reference on a single thinker or school of thought, but also reads well from cover to cover as the "story of thought". If you are looking for a good introduction to philosophy, it would be hard to find a more complete, accessible, and universally appealing resource.