Modern Compressible Flow: With Historical Perspective


John D. Anderson Jr. - 1981
    In keeping with previous versions, the 3rd edition uses numerous historical vignettes that show the evolution of the field. New pedagogical features--"Roadmaps" showing the development of a given topic, and "Design Boxes" giving examples of design decisions--will make the 3rd edition even more practical and user-friendly than before. The 3rd edition strikes a careful balance between classical methods of determining compressible flow, and modern numerical and computer techniques (such as CFD) now used widely in industry & research. A new Book Website will contain all problem solutions for instructors.

Semiconductor Device Fundamentals


Robert F. Pierret - 1995
    Problems are designed to progressively enhance MATLAB-use proficiency, so students need not be familiar with MATLAB at the start of your course. Program scripts that are answers to exercises in the text are available at no charge in electronic form (see Teaching Resources below). *Supplement and Review Mini-Chapters after each of the text's three parts contain an extensive review list of terms, test-like problem sets with answers, and detailed suggestions on supplemental reading to reinforce students' learning and help them prepare for exams. *Read-Only Chapters, strategically placed to provide a change of pace during the course, provide informative, yet enjoyable reading for students. *Measurement Details and Results samples offer students a realistic perspective on the seldom-perfect nature of device characteristics, contrary to the way they are often represented in introductory texts. Content Highlig

Mechanical Vibrations


Singiresu S. Rao - 1986
     This text gives expanded explanations of the fundamentals of vibration including history of vibration, degree of freedom systems, vibration control, vibration measurement, and more. For engineers and other professionals who want a clear introduction to vibration engineering.

Sustainable Energy - Without the Hot Air


David J.C. MacKay - 2008
    In case study format, this informative reference answers questions surrounding nuclear energy, the potential of sustainable fossil fuels, and the possibilities of sharing renewable power with foreign countries. While underlining the difficulty of minimizing consumption, the tone remains positive as it debunks misinformation and clearly explains the calculations of expenditure per person to encourage people to make individual changes that will benefit the world at large.

Physics, Volume 1


Robert Resnick - 1966
    The Fourth Edition of volumes 1 and 2 is concerned with mechanics and E&M/Optics. New features include: expanded coverage of classic physics topics, substantial increases in the number of in-text examples which reinforce text exposition, the latest pedagogical and technical advances in the field, numerical analysis, computer-generated graphics, computer projects and much more.

Foundations of Materials Science and Engineering


William F. Smith - 1986
    It splits the mechanical properties chapter into two separate chapters in order to provide additional and expanded coverage of such topics as fatigue, crack propagation and stress, rupture time, and temperature relationships in creep, to name just a few. In addition, all new topics are accompanied by new problems for a stronger understanding of recent developments in the field.

Engineering Mechanics: Dynamics (Volume 2)


J.L. Meriam - 1952
    It illustrates both the cohesiveness of the relatively few fundamental ideas in this area and the great variety of problems these ideas solve. All of the problems address principles and procedures inherent in the design and anlysis of engineering structures and mechanical systems, with many of the problems referring explicitly to design considerations.

Manufacturing Processes for Engineering Materials


Serope Kalpakjian - 2007
    The book carefully presents the fundamentals of materials processing along with their relevant applications, so that the reader can clearly assess the capabilities, limitations, and potentials of manufacturing processes and their competitive aspects. Using real-world examples and well-wrought graphics, this book covers a multitude of topics, including the mechanical behavior of materials; the structure and manufacturing properties of metals; surfaces, dimensional characteristics, inspection, and quality assurance; metal-casting processes including heat treatment; bulk deformation processes; sheet-metal forming processes; material removal processes; polymers, reinforced plastics, rapid prototyping and rapid tooling; metal powders, ceramics, glasses, composites, and superconductors; joining and fastening processes; microelectronic and micromechanical devices; automation; computer-integrated systems; and product design. For manufacturing engineers, metallurgists, industrial designers, material handlers, product designers, and quality assurance managers.

Modern Control Systems


Richard C. Dorf - 1974
    Written for a senior-level course, this engineering textbook presents the concepts of feedback control system theory as they have been developed in the frequency and time domains, discussing such topics as robust control systems, state variable models, computer control systems, internal model contro

Mechanical Metallurgy


George E. Dieter - 1961
    It covers the entire scope of mechanical metallurgy, from an understanding of the continuum description of stress and strain, through crystalline and defect mechanisms of flow and fracture, and on to a consideration of major mechanical property tests and the basic metalworking process. It has been updated throughout, SI units have been added, and end-of-chapter study questions are included.

Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering


Steven H. Strogatz - 1994
    The presentation stresses analytical methods, concrete examples, and geometric intuition. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory.About the Author:Steven Strogatz is in the Center for Applied Mathematics and the Department of Theoretical and Applied Mathematics at Cornell University. Since receiving his Ph.D. from Harvard university in 1986, Professor Strogatz has been honored with several awards, including the E.M. Baker Award for Excellence, the highest teaching award given by MIT.

Introductory Circuit Analysis


Robert L. Boylestad - 1968
    Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.

Physics for Scientists and Engineers, Volume 1


Raymond A. Serway - 2003
    However, rather than resting on that reputation, the new edition of this text marks a significant advance in the already excellent quality of the book. While preserving concise language, state of the art educational pedagogy, and top-notch worked examples, the Eighth Edition features a unified art design as well as streamlined and carefully reorganized problem sets that enhance the thoughtful instruction for which Raymond A. Serway and John W. Jewett, Jr. earned their reputations. Likewise, PHYSICS FOR SCIENTISTS AND ENGINEERS, will continue to accompany Enhanced WebAssign in the most integrated text-technology offering available today. In an environment where new Physics texts have appeared with challenging and novel means to teach students, this book exceeds all modern standards of education from the most solid foundation in the Physics market today.

The Perfectionists: How Precision Engineers Created the Modern World


Simon Winchester - 2018
    At the dawn of the Industrial Revolution in eighteenth-century England, standards of measurement were established, giving way to the development of machine tools—machines that make machines. Eventually, the application of precision tools and methods resulted in the creation and mass production of items from guns and glass to mirrors, lenses, and cameras—and eventually gave way to further breakthroughs, including gene splicing, microchips, and the Hadron Collider.Simon Winchester takes us back to origins of the Industrial Age, to England where he introduces the scientific minds that helped usher in modern production: John Wilkinson, Henry Maudslay, Joseph Bramah, Jesse Ramsden, and Joseph Whitworth. It was Thomas Jefferson who later exported their discoveries to the fledgling United States, setting the nation on its course to become a manufacturing titan. Winchester moves forward through time, to today’s cutting-edge developments occurring around the world, from America to Western Europe to Asia.As he introduces the minds and methods that have changed the modern world, Winchester explores fundamental questions. Why is precision important? What are the different tools we use to measure it? Who has invented and perfected it? Has the pursuit of the ultra-precise in so many facets of human life blinded us to other things of equal value, such as an appreciation for the age-old traditions of craftsmanship, art, and high culture? Are we missing something that reflects the world as it is, rather than the world as we think we would wish it to be? And can the precise and the natural co-exist in society?

Fluid Mechanics


Pijush K. Kundu - 1990
    New to this third edition are expanded coverage of such important topics as surface boundary interfaces, improved discussions of such physical and mathematical laws as the Law of Biot and Savart and the Euler Momentum Integral. A very important new section on Computational Fluid Dynamics has been added for the very first time to this edition. Expanded and improved end-of-chapter problems will facilitate the teaching experience for students and instrutors alike. This book remains one of the most comprehensive and useful texts on fluid mechanics available today, with applications going from engineering to geophysics, and beyond to biology and general science. * Ample, useful end-of-chapter problems.* Excellent Coverage of Computational Fluid Dynamics.* Coverage of Turbulent Flows.* Solutions Manual available.