Book picks similar to
Schaum's Outline of Linear Algebra by Seymour Lipschutz
mathematics
math
algebra
reference
Statistics Done Wrong: The Woefully Complete Guide
Alex Reinhart - 2013
Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.
Hexaflexagons and Other Mathematical Diversions
Martin Gardner - 1959
He has selected a group of diversions which are not only entertaining but mathematically meaningful as well. The result is a work which is rewarding on almost every level of mathematical achievement."—Miriam Hecht, Iscripta Mathematica
MAKE: Electronics: Learning Through Discovery
Charles Platt - 2008
I also love the sense of humor. It's very good at disarming the fear. And it's gorgeous. I'll be recommending this book highly." --Tom Igoe, author of Physical Computing and Making Things TalkWant to learn the fundamentals of electronics in a fun, hands-on way? With Make: Electronics, you'll start working on real projects as soon as you crack open the book. Explore all of the key components and essential principles through a series of fascinating experiments. You'll build the circuits first, then learn the theory behind them!Build working devices, from simple to complex You'll start with the basics and then move on to more complicated projects. Go from switching circuits to integrated circuits, and from simple alarms to programmable microcontrollers. Step-by-step instructions and more than 500 full-color photographs and illustrations will help you use -- and understand -- electronics concepts and techniques.Discover by breaking things: experiment with components and learn from failureSet up a tricked-out project space: make a work area at home, equipped with the tools and parts you'll needLearn about key electronic components and their functions within a circuitCreate an intrusion alarm, holiday lights, wearable electronic jewelry, audio processors, a reflex tester, and a combination lockBuild an autonomous robot cart that can sense its environment and avoid obstaclesGet clear, easy-to-understand explanations of what you're doing and why
Everyday Calculus: Discovering the Hidden Math All Around Us
Oscar E. Fernandez - 2014
For some of us, the word conjures up memories of ten-pound textbooks and visions of tedious abstract equations. And yet, in reality, calculus is fun, accessible, and surrounds us everywhere we go. In Everyday Calculus, Oscar Fernandez shows us how to see the math in our coffee, on the highway, and even in the night sky.Fernandez uses our everyday experiences to skillfully reveal the hidden calculus behind a typical day's events. He guides us through how math naturally emerges from simple observations-how hot coffee cools down, for example-and in discussions of over fifty familiar events and activities. Fernandez demonstrates that calculus can be used to explore practically any aspect of our lives, including the most effective number of hours to sleep and the fastest route to get to work. He also shows that calculus can be both useful-determining which seat at the theater leads to the best viewing experience, for instance-and fascinating-exploring topics such as time travel and the age of the universe. Throughout, Fernandez presents straightforward concepts, and no prior mathematical knowledge is required. For advanced math fans, the mathematical derivations are included in the appendixes.Whether you're new to mathematics or already a curious math enthusiast, Everyday Calculus invites you to spend a day discovering the calculus all around you. The book will convince even die-hard skeptics to view this area of math in a whole new way.
Unknown Quantity: A Real and Imaginary History of Algebra
John Derbyshire - 2006
As he did so masterfully in Prime Obsession, Derbyshire brings the evolution of mathematical thinking to dramatic life by focusing on the key historical players. Unknown Quantity begins in the time of Abraham and Isaac and moves from Abel's proof to the higher levels of abstraction developed by Galois through modern-day advances. Derbyshire explains how a simple turn of thought from this plus this equals this to this plus what equals this? gave birth to a whole new way of perceiving the world. With a historian's narrative authority and a beloved teacher's clarity and passion, Derbyshire leads readers on an intellectually satisfying and pleasantly challenging historical and mathematical journey.
Finite-Dimensional Vector Spaces
Paul R. Halmos - 1947
The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all, this is an excellent work, of equally high value for both student and teacher." Zentralblatt f�r Mathematik
Introduction to Real Analysis
Robert G. Bartle - 1982
Therefore, this book provides the fundamental concepts and techniques of real analysis for readers in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations and extend ideas to a new context. Like the first two editions, this edition maintains the same spirit and user-friendly approach with some streamlined arguments, a few new examples, rearranged topics, and a new chapter on the Generalized Riemann Integral.
The Fractal Geometry of Nature
Benoît B. Mandelbrot - 1977
The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.
Quantum Computation and Quantum Information
Michael A. Nielsen - 2000
A wealth of accompanying figures and exercises illustrate and develop the material in more depth. They describe what a quantum computer is, how it can be used to solve problems faster than familiar "classical" computers, and the real-world implementation of quantum computers. Their book concludes with an explanation of how quantum states can be used to perform remarkable feats of communication, and of how it is possible to protect quantum states against the effects of noise.
How to Think Like a Mathematician
Kevin Houston - 2009
Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
Precalculus Mathematics in a Nutshell: Geometry, Algebra, Trigonometry
George F. Simmons - 1981
. . Algebra's importance lies in the student's future. . . as essential preparation for the serious study of science, engineering, economics, or for more advanced types of mathematics. . . The primary importance of trigonometry is not in its applications to surveying and navigation, or in making computations about triangles, but rather in the mathematical description of vibrations, rotations, and periodic phenomena of all kinds, including light, sound, alternating currents, and the orbits of the planets around the sun. In this brief, clearly written book, the essentials of geometry, algebra, and trigonometry are pulled together into three complementary and convenient small packages, providing an excellent preview and review for anyone who wishes to prepare to master calculus with a minimum of misunderstanding and wasted time and effort. Students and other readers will find here all they need to pull them through.
What Is Mathematics?: An Elementary Approach to Ideas and Methods
Richard Courant - 1941
Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.Brought up to date with a new chapter by Ian Stewart, What is Mathematics? Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.Formal mathematics is like spelling and grammar - a matter of the correct application of local rules. Meaningful mathematics is like journalism - it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature - it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature - it opens a window onto the world of mathematics for anyone interested to view.
The Art of Problem Solving Vol. 2: And Beyond
Sandor Leholzky - 2003
The Art of Problem Solving, Volume 2, is the classic problem solving textbook used by many successful high school math teams and enrichment programs and have been an important building block for students who, like the authors, performed well enough on the American Mathematics Contest series to qualify for the Math Olympiad Summer Program which trains students for the United States International Math Olympiad team.Volume 2 is appropriate for students who have mastered the problem solving fundamentals presented in Volume 1 and are ready for a greater challenge. Although the Art of Problem Solving is widely used by students preparing for mathematics competitions, the book is not just a collection of tricks. The emphasis on learning and understanding methods rather than memorizing formulas enables students to solve large classes of problems beyond those presented in the book.Speaking of problems, the Art of Problem Solving, Volume 2, contains over 500 examples and exercises culled from such contests as the Mandelbrot Competition, the AMC tests, and ARML. Full solutions (not just answers!) are available for all the problems in the solution manual.