Strategic Management of Technological Innovation


Melissa A. Schilling - 2000
    Unlike other books, Schilling's approach synthesizes the major research in the field, providing students with the knowledge needed to enhance case discussion and analysis. The subject is approached as a strategic process, and as such, is organized to mirror the strategic management process used in most strategy textbooks, progressing from assessing the competitive dynamics of a situation, to strategy formulation, to strategy implementation. As a brief, affordable paperback, it is ideal to package with cases. Recommended case sets from the author are available through the Primis Custom Case Database or from the Harvard Business School Case Database.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

Learning PHP and MySQL


Michele E. Davis - 2006
    When working hand-in-hand, they serve as the standard for the rapid development of dynamic, database-driven websites. This combination is so popular, in fact, that it's attracting manyprogramming newbies who come from a web or graphic design background and whose first language is HTML. If you fall into this ever-expanding category, then this book is for you."Learning PHP and MySQL" starts with the very basics of the PHP language, including strings and arrays, pattern matching and a detailed discussion of the variances in different PHP versions. Next, it explains how to work with MySQL, covering information on SQL data access for language and data fundamentals like tables and statements.Finally, after it's sure that you've mastered these separate concepts, the book shows you how to put them together to generate dynamic content. In the process, you'll also learn about error handling, security, HTTP authentication, and more.If you're a hobbyist who is intimidated by thick, complex computer books, then this guide definitely belongs on your shelf. "Learning PHP and MySQL" explains everything--from basic concepts to the nuts and bolts of performing specific tasks--in plain English.Part of O'Reilly's bestselling Learning series, the book is an easy-to-use resource designed specifically for newcomers. It's also a launching pad for future learning, providing you with a solid foundation for more advanced development.

Amazon Elastic Compute Cloud (EC2) User Guide


Amazon Web Services - 2012
    This is official Amazon Web Services (AWS) documentation for Amazon Compute Cloud (Amazon EC2).This guide explains the infrastructure provided by the Amazon EC2 web service, and steps you through how to configure and manage your virtual servers using the AWS Management Console (an easy-to-use graphical interface), the Amazon EC2 API, or web tools and utilities.Amazon EC2 provides resizable computing capacity—literally, server instances in Amazon's data centers—that you use to build and host your software systems.

Engineering Thermodynamics: A Computer Approach (Si Units Version) (Revised)


R.K. Rajput - 2009
    Pure Substances, The First And Second Laws, Gases, Psychrometrics, The Vapor, Gas And Refrigeration Cycles, Heat Transfer, Compressible Flow, Chemical Reactions, Fuels, And More Are Presented In Detail And Enhanced With Practical Applications. This Version Presents The Material Using SI Units And Has Ample Material On SI Conversion, Steam Tables, And A Mollier Diagram. A CD-ROM, Included With The Print Version Of The Text, Includes A Fully Functional Version Of Quickfield (Widely Used In Industry), As Well As Numerous Demonstrations And Simulations With MATLAB, And Other Third Party Software.

Functional Programming in Scala


Rúnar Bjarnason - 2013
    As a result, functional code is easier to test and reuse, simpler to parallelize, and less prone to bugs. Scala is an emerging JVM language that offers strong support for FP. Its familiar syntax and transparent interoperability with existing Java libraries make Scala a great place to start learning FP.Functional Programming in Scala is a serious tutorial for programmers looking to learn FP and apply it to the everyday business of coding. The book guides readers from basic techniques to advanced topics in a logical, concise, and clear progression. In it, they'll find concrete examples and exercises that open up the world of functional programming.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Designing Data-Intensive Applications


Martin Kleppmann - 2015
    Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords?In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures

The Elements of Data Analytic Style


Jeffrey Leek - 2015
    This book is focused on the details of data analysis that sometimes fall through the cracks in traditional statistics classes and textbooks. It is based in part on the authors blog posts, lecture materials, and tutorials. The author is one of the co-developers of the Johns Hopkins Specialization in Data Science the largest data science program in the world that has enrolled more than 1.76 million people. The book is useful as a companion to introductory courses in data science or data analysis. It is also a useful reference tool for people tasked with reading and critiquing data analyses. It is based on the authors popular open-source guides available through his Github account (https://github.com/jtleek). The paper is also available through Leanpub (https://leanpub.com/datastyle), if the book is purchased on that platform you are entitled to lifetime free updates.

Lucene in Action


Erik Hatcher - 2004
    It describes how to index your data, including types you definitely need to know such as MS Word, PDF, HTML, and XML. It introduces you to searching, sorting, filtering, and highlighting search results.Lucene powers search in surprising placesWhat's Inside- How to integrate Lucene into your applications- Ready-to-use framework for rich document handling- Case studies including Nutch, TheServerSide, jGuru, etc.- Lucene ports to Perl, Python, C#/.Net, and C++- Sorting, filtering, term vectors, multiple, and remote index searching- The new SpanQuery family, extending query parser, hit collecting- Performance testing and tuning- Lucene add-ons (hit highlighting, synonym lookup, and others)

Hacking: The Art of Exploitation


Jon Erickson - 2003
    This book explains the technical aspects of hacking, including stack based overflows, heap based overflows, string exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.

Building Machine Learning Systems with Python


Willi Richert - 2013
    

React: Up and Running


Stoyan Stefanov - 2015
    With "React: Up and Running" you'll learn how to get off the ground with React, with no prior knowledge.This book teaches you how to build components, the building blocks of your apps, as well as how to organize the components into large-scale apps. In addition, you ll learn about unit testing and optimizing performance, while focusing on the application s data (and letting the UI take care of itself)."

Python Testing with Pytest: Simple, Rapid, Effective, and Scalable


Brian Okken - 2017
    The pytest testing framework helps you write tests quickly and keep them readable and maintainable - with no boilerplate code. Using a robust yet simple fixture model, it's just as easy to write small tests with pytest as it is to scale up to complex functional testing for applications, packages, and libraries. This book shows you how.For Python-based projects, pytest is the undeniable choice to test your code if you're looking for a full-featured, API-independent, flexible, and extensible testing framework. With a full-bodied fixture model that is unmatched in any other tool, the pytest framework gives you powerful features such as assert rewriting and plug-in capability - with no boilerplate code.With simple step-by-step instructions and sample code, this book gets you up to speed quickly on this easy-to-learn and robust tool. Write short, maintainable tests that elegantly express what you're testing. Add powerful testing features and still speed up test times by distributing tests across multiple processors and running tests in parallel. Use the built-in assert statements to reduce false test failures by separating setup and test failures. Test error conditions and corner cases with expected exception testing, and use one test to run many test cases with parameterized testing. Extend pytest with plugins, connect it to continuous integration systems, and use it in tandem with tox, mock, coverage, unittest, and doctest.Write simple, maintainable tests that elegantly express what you're testing and why.What You Need: The examples in this book are written using Python 3.6 and pytest 3.0. However, pytest 3.0 supports Python 2.6, 2.7, and Python 3.3-3.6.

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details