Book picks similar to
Theory of Simple Liquids by Jean-Pierre Hansen


physics
buku-utk-jadi-pandai
matfysstat
phy-soft-matter

How to Teach Quantum Physics to Your Dog


Chad Orzel - 2009
    Could she use quantum tunnelling to get through the neighbour's fence and chase bunnies? What about quantum teleportation to catch squirrels before they climb out of reach? In this witty and informative book, Orzel and Emmy - the talking dog - discuss the key theories of Quantum Physics and its fascinating history. From quarks and gluons to Heisenberg's uncertainty principle, this is the perfect introduction to the fundamental laws which govern the universe.

For the Love of Physics: From the End of the Rainbow to the Edge of Time - A Journey Through the Wonders of Physics


Walter Lewin - 2011
    “I walk with a new spring in my step and I look at life through physics-colored eyes,” wrote one such fan. When Lewin’s lectures were made available online, he became an instant YouTube celebrity, and The New York Times declared, “Walter Lewin delivers his lectures with the panache of Julia Child bringing French cooking to amateurs and the zany theatricality of YouTube’s greatest hits.” For more than thirty years as a beloved professor at the Massachusetts Institute of Technology, Lewin honed his singular craft of making physics not only accessible but truly fun, whether putting his head in the path of a wrecking ball, supercharging himself with three hundred thousand volts of electricity, or demonstrating why the sky is blue and why clouds are white. Now, as Carl Sagan did for astronomy and Brian Green did for cosmology, Lewin takes readers on a marvelous journey in For the Love of Physics, opening our eyes as never before to the amazing beauty and power with which physics can reveal the hidden workings of the world all around us. “I introduce people to their own world,” writes Lewin, “the world they live in and are familiar with but don’t approach like a physicist—yet.” Could it be true that we are shorter standing up than lying down? Why can we snorkel no deeper than about one foot below the surface? Why are the colors of a rainbow always in the same order, and would it be possible to put our hand out and touch one? Whether introducing why the air smells so fresh after a lightning storm, why we briefly lose (and gain) weight when we ride in an elevator, or what the big bang would have sounded like had anyone existed to hear it, Lewin never ceases to surprise and delight with the extraordinary ability of physics to answer even the most elusive questions. Recounting his own exciting discoveries as a pioneer in the field of X-ray astronomy—arriving at MIT right at the start of an astonishing revolution in astronomy—he also brings to life the power of physics to reach into the vastness of space and unveil exotic uncharted territories, from the marvels of a supernova explosion in the Large Magellanic Cloud to the unseeable depths of black holes. “For me,” Lewin writes, “physics is a way of seeing—the spectacular and the mundane, the immense and the minute—as a beautiful, thrillingly interwoven whole.” His wonderfully inventive and vivid ways of introducing us to the revelations of physics impart to us a new appreciation of the remarkable beauty and intricate harmonies of the forces that govern our lives.

A First Course in General Relativity


Bernard F. Schutz - 1985
    This textbook, based on the author's own undergraduate teaching, develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth. It reinforces this understanding by making a detailed study of the theory's most important applications - neutron stars, black holes, gravitational waves, and cosmology - using the most up-to-date astronomical developments. The book is suitable for a one-year course for beginning graduate students or for undergraduates in physics who have studied special relativity, vector calculus, and electrostatics. Graduate students should be able to use the book selectively for half-year courses.

Quantum Theory


David Bohm - 1951
    Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of the physical formulation of the quantum theory, from its origin and early development through an analysis of wave vs. particle properties of matter. In Part II, Professor Bohm addresses the mathematical formulation of the quantum theory, examining wave functions, operators, Schrödinger's equation, fluctuations, correlations, and eigenfunctions.Part III takes up applications to simple systems and further extensions of quantum theory formulation, including matrix formulation and spin and angular momentum. Parts IV and V explore the methods of approximate solution of Schrödinger's equation and the theory of scattering. In Part VI, the process of measurement is examined along with the relationship between quantum and classical concepts.Throughout the text, Professor Bohm places strong emphasis on showing how the quantum theory can be developed in a natural way, starting from the previously existing classical theory and going step by step through the experimental facts and theoretical lines of reasoning which led to replacement of the classical theory by the quantum theory.

An Introduction to Modern Astrophysics


Bradley W. Carroll - 1995
    Designed for the junior- level astrophysics course, each topic is approached in the context of the major unresolved questions in astrophysics. The core chapters have been designed for a course in stellar structure and evolution, while the extended chapters provide additional coverage of the solar system, galactic structure, dynamics, evolution, and cosmology. * Two versions of this text are available: An Introduction to Modern Stellar Astrophysics, (Chapters 1-17), and An Introduction to Modern Astrophysics, (Chapters 1-28). * Computer programs included with the text allow students to explore the physics of stars and galaxies. * In designing a curriculum, instructors can combine core and extended chapters with the optional advanced sections so as to meet their individual goals. * Up-to-date coverage of current astrophysical discoveries are included. * This text emphasizes computational physics, including computer problems and on-line programs. * This text also includes a selection of over 500 problems. For additional information and computer codes to be used

Through Two Doors at Once: The Elegant Experiment That Captures the Enigma of Our Quantum Reality


Anil Ananthaswamy - 2018
    Thomas Young devised it in the early 1800s to show that light behaves like a wave, and in doing so opposed Isaac Newton. Nearly a century later, Albert Einstein showed that light comes in quanta, or particles, and the experiment became key to a fierce debate between Einstein and Niels Bohr over the nature of reality. Richard Feynman held that the double slit embodies the central mystery of the quantum world. Decade after decade, hypothesis after hypothesis, scientists have returned to this ingenious experiment to help them answer deeper and deeper questions about the fabric of the universe.How can a single particle behave both like a particle and a wave? Does a particle exist before we look at it, or does the very act of looking create reality? Are there hidden aspects to reality missing from the orthodox view of quantum physics? Is there a place where the quantum world ends and the familiar classical world of our daily lives begins, and if so, can we find it? And if there's no such place, then does the universe split into two each time a particle goes through the double slit?With his extraordinarily gifted eloquence, Anil Ananthaswamy travels around the world and through history, down to the smallest scales of physical reality we have yet fathomed. Through Two Doors at Once is the most fantastic voyage you can take.

Massive: The Missing Particle That Sparked the Greatest Hunt in Science


Ian Sample - 2010
    A story of grand ambition, intense competition, clashing egos, and occasionally spectacular failures, Massive is the first book that reveals the science, culture, and politics behind the biggest unanswered question in modern physics--what gives things mass? Drawing upon his unprecedented access to Peter Higgs, after whom the particle is named, award-winning science writer Ian Sample chronicles the multinational and multibillion-dollar quest to solve the mystery of mass. For scientists, to find the God particle is to finally understand the origin of mass, and until now, the story of their search has never been told.

The Quantum Zoo: A Tourist's Guide to the Neverending Universe


Marcus Chown - 2006
    Together, they explain virtually everything about the world we live in. But, almost a century after their advent, most people haven't the slightest clue what either is about. Did you know that there's so much empty space inside matter that the entire human race could be squeezed into the volume of a sugar cube? Or that you grow old more quickly on the top floor of a building than on the ground floor? And did you realize that 1 per cent of the static on a TV tuned between stations is the relic of the Big Bang? These and many other remarkable facts about the world are direct consequences of quantum physics and relativity. Quantum theory has literally made the modern world possible. Not only has it given us lasers, computers, and nuclear reactors, but it has provided an explanation of why the sun shines and why the ground beneath our feet is solid. Despite this, however, quantum theory and relativity remain a patchwork of fragmented ideas, vaguely understood at best and often utterly mysterious. average person. Author Marcus Chown emphatically disagrees. As Einstein himself said, Most of the fundamental ideas of science are essentially simple and may, as a rule, be expressed in a language comprehensible to everyone. If you think that the marvels of modern physics have passed you by, it is not too late. In Chown's capable hands, quantum physics and relativity are not only painless but downright fun. So sit back, relax, and get comfortable as an adept and experienced science communicator brings you quickly up to speed on some of the greatest ideas in the history of human thought.

The Los Alamos Primer: The First Lectures on How To Build an Atomic Bomb


Robert Serber - 1992
    The lecturer was Robert Serber, J. Robert Oppenheimer's protégé, and they learned that their job was to invent the world's first atomic bomb.Serber's lecture notes, nicknamed the "Los Alamos Primer," were mimeographed and passed from hand to hand, remaining classified for many years. They are published here for the first time, and now contemporary readers can see just how much was known and how terrifyingly much was unknown when the Manhattan Project began. Could this "gadget," based on the newly discovered principles of nuclear fission, really be designed and built? Could it be small enough and light enough for an airplane to carry? If it could be built, could it be controlled?Working with Richard Rhodes, Pulitzer Prize-winning historian of the development of the atomic bomb, Professor Serber has annotated original lecture notes with explanations of the physics terms for the nonspecialist. His preface, an informal memoir, vividly conveys the mingled excitement, uncertainty, and intensity felt by the Manhattan Project scientists. Rhodes's introduction provides a brief history of the development of atomic physics up to the day that Serber stood before his blackboard at Los Alamos. In this edition, The Los Alamos Primer finally emerges from the archives to give a new understanding of the very beginning of nuclear weapons. No seminar anywhere has had greater historical consequences.

Physics for the Rest of Us


Roger S. Jones - 1992
    Offers a humanistic and cultural view of modern physics.

Spacetime Physics


Edwin F. Taylor - 1966
    Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars.  The chapter on general relativity with new material on gravity waves, black holes, and cosmology.

Introduction to Robotics: Mechanics and Control


John J. Craig - 1985
    This edition features new material on Controls, Computer-Aided Design and Manufacturing, and Off-Line Programming Systems.

Classical Dynamics of Particles and Systems


Jerry B. Marion - 1970
    Vector calculus is used extensively to explore topics.The Lagrangian formulation of mechanics is introduced early to show its powerful problem solving ability.. Modern notation and terminology are used throughout in support of the text's objective: to facilitate students' transition to advanced physics and the mathematical formalism needed for the quantum theory of physics. CLASSICAL DYNAMICS OF PARTICLES AND SYSTEMS can easily be used for a one- or two-semester course, depending on the instructor's choice of topics.

Modern Compressible Flow: With Historical Perspective


John D. Anderson Jr. - 1981
    In keeping with previous versions, the 3rd edition uses numerous historical vignettes that show the evolution of the field. New pedagogical features--"Roadmaps" showing the development of a given topic, and "Design Boxes" giving examples of design decisions--will make the 3rd edition even more practical and user-friendly than before. The 3rd edition strikes a careful balance between classical methods of determining compressible flow, and modern numerical and computer techniques (such as CFD) now used widely in industry & research. A new Book Website will contain all problem solutions for instructors.

Thermodynamics


Enrico Fermi - 1956
    Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entropy (properties of cycles, entropy of a system whose states can be represented on a (V, p) diagram, Clapeyron and Van der Waals equations), thermodynamic potentials (free energy, thermodynamic potential at constant pressure, the phase rule, thermodynamics of the reversible electric cell), gaseous reactions (chemical equilibria in gases, Van't Hoff reaction box, another proof of the equation of gaseous equilibria, principle of Le Chatelier), the thermodynamics of dilute solutions (osmotic pressure, chemical equilibria in solutions, the distribution of a solute between 2 phases vapor pressure, boiling and freezing points), the entropy constant (Nernst's theorem, thermal ionization of a gas, thermionic effect, etc.).