Book picks similar to
Equations of Mathematical Physics by A.N. Tikhonov
mathematics
fizika
science-tech
math-physics
Adding a Dimension: Seventeen Essays on the History of Science
Isaac Asimov - 1964
Asimov takes the reader on a rousing mental trip into the world of mathematics, physics, chemistry, biology, and astronomy.
The Secret Language of Money: How to Make Smarter Financial Decisions and Live a Richer Life
David Krueger - 2009
What's complicated is what we do with money. We use money to soothe our feelings and buy respect, to show how much we care or how little. We don't simply earn, save, and spend money: we flirt with it, crave it, and scorn it; we punish and reward ourselves with it.Without realizing it, we give money meaning it doesn't really have--what former psychiatrist and current business coach David Krueger calls our "money story." And in the process of playing out that money story, we often sacrifice the most important things in our life: our health, freedom, relationships, and happiness.What is your money story?Do you consistently spend more than you have?Do you follow the herd in your investments--even though you know the herd is usually wrong?Have you neglected to save for the future, even when you have the means?Do you feel controlled or shackled by debt?Is your money somehow never "enough"?Is money, or the lack of it, always on your mind?The Secret Language of Money is a guided tour to the subconscious meanings we give money, the conflicted ways our braindeals with money, the reasons we tend to make the same money mistakes over and over--and most importantly, how you can change all that.A brilliant blend of cutting-edge science and real-world application, The Secret Language of Money helps you rewrite your money story and find that elusive balance of wealth, health, and joy we all seek.
A Many-Colored Glass (Page-Barbour Lectures)
Freeman Dyson - 2007
The emphasis is, instead, on the myriad ways in which the universe presents itself to us--and how, as observers and participants in its processes, we respond to it. "Life, like a dome of many-colored glass," wrote Percy Bysshe Shelley, "stains the white radiance of eternity." The author seeks here to explore the variety that gives life its beauty.Taken from Dyson's recent public lectures--delivered to audiences with no specialized knowledge in hard sciences--the book begins with a consideration of the practical and political questions surrounding biotechnology. As he seeks how best to explain the place of life in the universe, Dyson then moves from the ethical to the purely scientific. The book concludes with an attempt to understand the implications of biology for philosophy and religion.The pieces in this collection touch on numerous disciplines, from astronomy and ecology to neurology and theology, speaking to the lay reader as well as to the scientist. As always, Dyson's view of human nature and behavior is balanced, and his predictions of a world to come serve primarily as a means for thinking about the world as it is today.
Introduction to Superstrings and M-Theory
Michio Kaku - 1989
Called by some, "the theory of everything," superstrings may solve a problem that has eluded physicists for the past 50 years, the final unification of the two great theories of the twentieth century, general relativity and quantum field theory. Now, here is a thoroughly revised, second edition of a course-tested comprehensive introductory graduate text on superstrings which stresses the most current areas of interest, not covered in other presentations, including: - Four-dimensional superstrings - Kac-Moody algebras - Teichm�ller spaces and Calabi-Yau manifolds - M-theory Membranes and D-branes - Duality and BPS relations - Matrix models The book begins with a simple discussion of point particle theory, and uses Feynman path integrals to unify the presentation of superstrings. It has been updated throughout, and three new chapters on M-theory have been added. Prerequisites are an acquaintance with quantum mechanics and relativity.
The Calculus Gallery: Masterpieces from Newton to Lebesgue
William Dunham - 2004
This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth--mathematicians whose achievements are comparable to those of Bach in music or Shakespeare in literature. William Dunham lucidly presents the definitions, theorems, and proofs. Students of literature read Shakespeare; students of music listen to Bach, he writes. But this tradition of studying the major works of the masters is, if not wholly absent, certainly uncommon in mathematics. This book seeks to redress that situation.Like a great museum, The Calculus Gallery is filled with masterpieces, among which are Bernoulli's early attack upon the harmonic series (1689), Euler's brilliant approximation of pi (1779), Cauchy's classic proof of the fundamental theorem of calculus (1823), Weierstrass's mind-boggling counterexample (1872), and Baire's original category theorem (1899). Collectively, these selections document the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching--a story of genius triumphing over some of the toughest, most subtle problems imaginable.Anyone who has studied and enjoyed calculus will discover in these pages the sheer excitement each mathematician must have felt when pushing into the unknown. In touring The Calculus Gallery, we can see how it all came to be.
Fearful Symmetry: The Search for Beauty in Modern Physics
A. Zee - 1986
A. Zee, a distinguished physicist and skillful expositor, tells the exciting story of how today's theoretical physicists are following Einstein in their search for the beauty and simplicity of Nature. Animated by a sense of reverence and whimsy, the book describes the majestic sweep and accomplishments of twentieth-century physics. In the end, we stand in awe before the grand vision of modern physics--one of the greatest chapters in the intellectual history of humankind.
Quantum Computing for Everyone
Chris Bernhardt - 2019
In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means.Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement--which, he says, is easier to describe mathematically than verbally--and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as "spooky action at a distance"); and introduces quantum cryptography. He recaps standard topics in classical computing--bits, gates, and logic--and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.
The Theory of Everything: The Quest to Explain All Reality
Don Lincoln - 2018
He was trying to find an equation that explained all physical reality - a theory of everything. He failed, but others have taken up the challenge in a remarkable quest that is shedding light on unsuspected secrets of the cosmos.Experimental physicist and award-winning educator Dr. Don Lincoln of the Fermi National Accelerator Laboratory takes you on this exciting journey in The Theory of Everything: The Quest to Explain All Reality. Suitable for the intellectually curious at all levels and assuming no background beyond basic high-school math, these 24 half-hour lectures cover recent developments at the forefront of particle physics and cosmology, while delving into the history of the centuries-long search for this holy grail of science.You trace the dream of a theory of everything through Newton, Maxwell, Einstein, Bohr, Schrödinger, Feynman, Gell-Mann, Weinberg, and other great physicists, charting their progress toward an all-embracing, unifying theory. Their resulting equations are the masterpieces of physics, which Dr. Lincoln explains in fascinating and accessible detail. Studying them is like touring a museum of great works of art - works that are progressing toward an ultimate, as-yet-unfinished masterpiece.Listening Length: 12 hours and 21 minutes
Emergence: The Connected Lives of Ants, Brains, Cities, and Software
Steven Johnson - 2001
Explaining why the whole is sometimes smarter than the sum of its parts, Johnson presents surprising examples of feedback, self-organization, and adaptive learning. How does a lively neighborhood evolve out of a disconnected group of shopkeepers, bartenders, and real estate developers? How does a media event take on a life of its own? How will new software programs create an intelligent World Wide Web? In the coming years, the power of self-organization -- coupled with the connective technology of the Internet -- will usher in a revolution every bit as significant as the introduction of electricity. Provocative and engaging, Emergence puts you on the front lines of this exciting upheaval in science and thought.
Love Thyself: The Message from Water III
Masaru Emoto - 1999
Water speaks for what is in our mind. Water awakens the subconscious memory in each person. . . . I now know why water is indispensable to the phenomenon of life, and why alternative therapies exist and why they’re effective. Water helped me understand religion and prayer and gave me a clue to understanding the nature of energy. It helped me understand the relationship between humanity and the cosmos. It gave me a clue to help me understand what dimensionality is. I could come one step closer to understanding the eternal theme of humanity that asks where we come from, why we are here, and what happens when we die. “Thus, for the release of this, the third volume in my series of The Message from Water, I decided to choose what the world most urgently needs at present as a theme. That is, of course, the need to eliminate war and terrorism throughout the world. The theme I have chosen is ‘prayer.’ When I thought about it more deeply, I realized that prayer is most effectively sent when each person in the world raises their energy of love by imagining a scene where the peoples of the world are living in peace. I’ve been taught this through the process of asking water many questions. “For this reason, the title of this book is ‘Love Thyself.’ First you must shine with positive, high-spirited vibrations, and be full of love. In order to do that, I think it’s important to love, thank, and respect yourself. If that’s the case, then each of those vibrations will be sent out into the world and the cosmos, and the great symphony of that harmonic vibration will wrap our planet in waves of love that serve to cherish our Heaven-granted lives. This is the message from water.” — Masaru Emoto
The Principle of Relativity (Books on Physics)
Albert Einstein - 1952
Lorentz.
Introduction to Graph Theory
Richard J. Trudeau - 1994
This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.
How Risky Is It, Really?: Why Our Fears Don't Always Match the Facts
David Ropeik - 2010
HOW RISKY IS IT, REALLY?International risk expert David Ropeik takes an in-depth look at our perceptions of risk and explains the hidden factors that make us unnecessarily afraid of relatively small threats and not afraid enough of some really big ones. This read is a comprehensive, accessible, and entertaining mixture of what's been discovered about how and why we fear — too much or too little. It brings into focus the danger of The Perception Gap: when our fears don't match the facts, and we make choices that create additional risks.This book will not decide for you what is really risky and what isn't. That's up to you. HOW RISKY IS IT, REALLY? will tell you how you make those decisions. Understanding how we perceive risk is the first step toward making wiser and healthier choices for ourselves as individuals and for society as a whole.TEST YOUR OWN "RISK RESPONSE" IN DOZENS OF SELF-QUIZZES!
A Treatise on Electricity and Magnetism, Vol. 1
James Clerk Maxwell - 1873
Topics include electrical work and energy in a system of conductors, mechanical action between two electrical systems, spherical harmonics, electric current, conduction and resistance, electrolysis, and other subjects. 1891 edition.
The Science of Information: From Language to Black Holes
Benjamin Schumacher - 2015
Never before in history have we been able to acquire, record, communicate, and use information in so many different forms. Never before have we had access to such vast quantities of data of every kind. This revolution goes far beyond the limitless content that fills our lives, because information also underlies our understanding of ourselves, the natural world, and the universe. It is the key that unites fields as different as linguistics, cryptography, neuroscience, genetics, economics, and quantum mechanics. And the fact that information bears no necessary connection to meaning makes it a profound puzzle that people with a passion for philosophy have pondered for centuries.Table of ContentsLECTURE 1The Transformability of Information 4LECTURE 2Computation and Logic Gates 17LECTURE 3Measuring Information 26LECTURE 4Entropy and the Average Surprise 34LECTURE 5Data Compression and Prefix-Free Codes 44LECTURE 6Encoding Images and Sounds 57LECTURE 7Noise and Channel Capacity 69LECTURE 8Error-Correcting Codes 82LECTURE 9Signals and Bandwidth 94LECTURE 10Cryptography and Key Entropy 110LECTURE 11Cryptanalysis and Unraveling the Enigma 119LECTURE 12Unbreakable Codes and Public Keys 130LECTURE 13What Genetic Information Can Do 140LECTURE 14Life’s Origins and DNA Computing 152LECTURE 15Neural Codes in the Brain 169LECTURE 16Entropy and Microstate Information 185LECTURE 17Erasure Cost and Reversible Computing 198LECTURE 18Horse Races and Stock Markets 213LECTURE 19Turing Machines and Algorithmic Information 226LECTURE 20Uncomputable Functions and Incompleteness 239LECTURE 21Qubits and Quantum Information 253LECTURE 22Quantum Cryptography via Entanglement 266LECTURE 23It from Bit: Physics from Information 281LECTURE 24The Meaning of Information 293