Change is the Only Constant: The Wisdom of Calculus in a Madcap World


Ben Orlin - 2019
    By spinning 28 mathematical tales, Orlin shows us that calculus is simply another language to express the very things we humans grapple with every day -- love, risk, time, and most importantly, change. Divided into two parts, "Moments" and "Eternities," and drawing on everyone from Sherlock Holmes to Mark Twain to David Foster Wallace, Change is the Only Constant unearths connections between calculus, art, literature, and a beloved dog named Elvis. This is not just math for math's sake; it's math for the sake of becoming a wiser and more thoughtful human.

The Little Book of Mathematical Principles, Theories, & Things


Robert Solomon - 2008
    Rare Book

Game Theory at Work: How to Use Game Theory to Outthink and Outmaneuver Your Competition


James D. Miller - 2003
    It has also often required oppressive and incomprehensible mathematics. Game Theory at Work steers around math and pedagogy to make this innovative tool accessible to a larger audience and allow all levels of business to use it to both improve decision-making skills and eliminate potentially lethal uncertainty.This proven tool requires everyone in an organization to look at the competition, guage his or her own responses to their actions, and then establish an appropriate strategy. Game Theory at Work will help business leaders at all levels improve their overall performance in:NegotiatingDecision makingEstablishing strategic alliancesMarketingPositioningBrandingPricing

Visions of Infinity: The Great Mathematical Problems


Ian Stewart - 2013
    Some of these problems are new, while others have puzzled and bewitched thinkers across the ages. Such challenges offer a tantalizing glimpse of the field's unlimited potential, and keep mathematicians looking toward the horizons of intellectual possibility.In Visions of Infinity, celebrated mathematician Ian Stewart provides a fascinating overview of the most formidable problems mathematicians have vanquished, and those that vex them still. He explains why these problems exist, what drives mathematicians to solve them, and why their efforts matter in the context of science as a whole. The three-century effort to prove Fermat's last theorem—first posited in 1630, and finally solved by Andrew Wiles in 1995—led to the creation of algebraic number theory and complex analysis. The Poincaré conjecture, which was cracked in 2002 by the eccentric genius Grigori Perelman, has become fundamental to mathematicians' understanding of three-dimensional shapes. But while mathematicians have made enormous advances in recent years, some problems continue to baffle us. Indeed, the Riemann hypothesis, which Stewart refers to as the “Holy Grail of pure mathematics,” and the P/NP problem, which straddles mathematics and computer science, could easily remain unproved for another hundred years.An approachable and illuminating history of mathematics as told through fourteen of its greatest problems, Visions of Infinity reveals how mathematicians the world over are rising to the challenges set by their predecessors—and how the enigmas of the past inevitably surrender to the powerful techniques of the present.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

Standard Deviations: Flawed Assumptions, Tortured Data, and Other Ways to Lie with Statistics


Gary Smith - 2014
    In Standard Deviations, economics professor Gary Smith walks us through the various tricks and traps that people use to back up their own crackpot theories. Sometimes, the unscrupulous deliberately try to mislead us. Other times, the well-intentioned are blissfully unaware of the mischief they are committing. Today, data is so plentiful that researchers spend precious little time distinguishing between good, meaningful indicators and total rubbish. Not only do others use data to fool us, we fool ourselves.With the breakout success of Nate Silver’s The Signal and the Noise, the once humdrum subject of statistics has never been hotter. Drawing on breakthrough research in behavioral economics by luminaries like Daniel Kahneman and Dan Ariely and taking to task some of the conclusions of Freakonomics author Steven D. Levitt, Standard Deviations demystifies the science behind statistics and makes it easy to spot the fraud all around.

Mathematical Mysteries: The Beauty and Magic of Numbers


Calvin C. Clawson - 1996
    This recreational math book takes the reader on a fantastic voyage into the world of natural numbers. From the earliest discoveries of the ancient Greeks to various fundamental characteristics of the natural number sequence, Clawson explains fascinating mathematical mysteries in clear and easy prose. He delves into the heart of number theory to see and understand the exquisite relationships among natural numbers, and ends by exploring the ultimate mystery of mathematics: the Riemann hypothesis, which says that through a point in a plane, no line can be drawn parallel to a given line.While a professional mathematician's treatment of number theory involves the most sophisticated analytical tools, its basic ideas are surprisingly easy to comprehend. By concentrating on the meaning behind various equations and proofs and avoiding technical refinements, Mathematical Mysteries lets the common reader catch a glimpse of this wonderful and exotic world.

The Art of the Infinite: The Pleasures of Mathematics


Robert M. Kaplan - 1980
    The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.

OpenIntro Statistics


David M. Diez - 2012
    Our inaugural effort is OpenIntro Statistics. Probability is optional, inference is key, and we feature real data whenever possible. Files for the entire book are freely available at openintro.org, and anybody can purchase a paperback copy from amazon.com for under $10.The future for OpenIntro depends on the involvement and enthusiasm of our community. Visit our website, openintro.org. We provide free course management tools, including an online question bank, utilities for creating course quizzes, and many other helpful resources.CERTAIN CONTENT THAT APPEARS ON THIS SITE COMES FROM AMAZON SERVICES LLC. THIS CONTENT IS PROVIDED ‘AS IS’ AND IS SUBJECT TO CHANGE OR REMOVAL AT ANY TIME.Can’t find it here? Search Amazon.com Search: All Products Apparel & AccessoriesBabyBeautyBooksCamera & PhotoCell Phones & ServiceClassical MusicComputersComputer & Video GamesDVDElectronicsGourmet FoodHome & GardenMiscellaneousHealth & Personal CareJewelry & WatchesKitchen & HousewaresMagazine SubscriptionsMusicMusical InstrumentsSoftwareSports & OutdoorsTools & HardwareToys & GamesVHS Keywords:

Electronics Fundamentals: Circuits, Devices and Applications (Floyd Electronics Fundamentals Series)


Thomas L. Floyd - 1983
    Written in a clear and accessible narrative, the 7th Edition focuses on fundamental principles and their applications to solving real circuit analysis problems, and devotes six chapters to examining electronic devices. With an eye-catching visual program and practical exercises, this book provides readers with the problem-solving experience they need in a style that makes complex material thoroughly understandable. For professionals with a career in electronics, engineering, technical sales, field service, industrial manufacturing, service shop repair, and/or technical writing.

The Manga Guide to Calculus


Hiroyuki Kojima - 2005
    She wants to cover the hard-hitting issues, like world affairs and politics, but does she have the smarts for it? Thankfully, her overbearing and math-minded boss, Mr. Seki, is here to teach her how to analyze her stories with a mathematical eye.In The Manga Guide to Calculus, you'll follow along with Noriko as she learns that calculus is more than just a class designed to weed out would-be science majors. You'll see that calculus is a useful way to understand the patterns in physics, economics, and the world around us, with help from real-world examples like probability, supply and demand curves, the economics of pollution, and the density of Shochu (a Japanese liquor).Mr. Seki teaches Noriko how to:Use differentiation to understand a function's rate of change Apply the fundamental theorem of calculus, and grasp the relationship between a function's derivative and its integral Integrate and differentiate trigonometric and other complicated functions Use multivariate calculus and partial differentiation to deal with tricky functions Use Taylor Expansions to accurately imitate difficult functions with polynomials Whether you're struggling through a calculus course for the first time or you just need a painless refresher, you'll find what you're looking for in The Manga Guide to Calculus.This EduManga book is a translation from a bestselling series in Japan, co-published with Ohmsha, Ltd. of Tokyo, Japan.

Math Geek: From Klein Bottles to Chaos Theory, a Guide to the Nerdiest Math Facts, Theorems, and Equations


Raphael Rosen - 2015
    From manhole covers to bubbles to subway maps, each page gives you a glimpse of the world through renowned mathematicians' eyes and reveals how their theorems and equations can be applied to nearly everything you encounter. Covering dozens of your favorite math topics, you'll find fascinating answers to questions like:How are the waiting times for buses determined?Why is Romanesco Broccoli so mesmerizing?How do you divide a cake evenly?Should you run or walk to avoid rain showers?Filled with compelling mathematical explanations, Math Geek sheds light on the incredible world of numbers hidden deep within your day-to-day life.

Enlightening Symbols: A Short History of Mathematical Notation and Its Hidden Powers


Joseph Mazur - 2014
    What did mathematicians rely on for their work before then? And how did mathematical notations evolve into what we know today? In Enlightening Symbols, popular math writer Joseph Mazur explains the fascinating history behind the development of our mathematical notation system. He shows how symbols were used initially, how one symbol replaced another over time, and how written math was conveyed before and after symbols became widely adopted.Traversing mathematical history and the foundations of numerals in different cultures, Mazur looks at how historians have disagreed over the origins of the numerical system for the past two centuries. He follows the transfigurations of algebra from a rhetorical style to a symbolic one, demonstrating that most algebra before the sixteenth century was written in prose or in verse employing the written names of numerals. Mazur also investigates the subconscious and psychological effects that mathematical symbols have had on mathematical thought, moods, meaning, communication, and comprehension. He considers how these symbols influence us (through similarity, association, identity, resemblance, and repeated imagery), how they lead to new ideas by subconscious associations, how they make connections between experience and the unknown, and how they contribute to the communication of basic mathematics.From words to abbreviations to symbols, this book shows how math evolved to the familiar forms we use today.

Ruler and Compass: Practical Geometric Constructions


Andrew Sutton - 2009
    Originally marked out by eye and later by use of a stretched cord, in time these forms came to be made with the simple tools of ruler and compass.This small book introduces the origins and basic principles of geometric constructions using these ancient tools, before going on to cover dozens of geometric forms, from practical fundamentals to more challenging constructions.

Introducing Infinity: A Graphic Guide


Brian Clegg - 2012
    The ancient Greeks were so horrified by the implications of an endless number that they drowned the man who gave away the secret. And a German mathematician was driven mad by the repercussions of his discovery of transfinite numbers. Brian Clegg and Oliver Pugh’s brilliant graphic tour of infinity features a cast of characters ranging from Archimedes and Pythagoras to al-Khwarizmi, Fibonacci, Galileo, Newton, Leibniz, Cantor, Venn, Gödel and Mandelbrot, and shows how infinity has challenged the finest minds of science and mathematics. Prepare to enter a world of paradox.