The Numbers Game: The Commonsense Guide to Understanding Numbers in the News, in Politics, and in Life


Michael Blastland - 2008
    Drawing on their hugely popular BBC Radio 4 show More or Less,, journalist Michael Blastland and internationally known economist Andrew Dilnot delight, amuse, and convert American mathphobes by showing how our everyday experiences make sense of numbers. The radical premise of The Numbers Game is to show how much we already know, and give practical ways to use our knowledge to become cannier consumers of the media. In each concise chapter, the authors take on a different theme—such as size, chance, averages, targets, risk, measurement, and data—and present it as a memorable and entertaining story. If you’ve ever wondered what “average” really means, whether the scare stories about cancer risk should convince you to change your behavior, or whether a story you read in the paper is biased (and how), you need this book. Blastland and Dilnot show how to survive and thrive on the torrent of numbers that pours through everyday life. It’s the essential guide to every cause you love or hate, and every issue you follow, in the language everyone uses.

Euler's Gem: The Polyhedron Formula and the Birth of Topology


David S. Richeson - 2008
    Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea.From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map.Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

Mathematical Elements for Computer Graphics


David F. Rogers - 1976
    It presents in a unified manner an introduction to the mathematical theory underlying computer graphic applications. It covers topics of keen interest to students in engineering and computer science: transformations, projections, 2-D and 3-D curve definition schemes, and surface definitions. It also includes techniques, such as B-splines, which are incorporated as part of the software in advanced engineering workstations. A basic knowledge of vector and matrix algebra and calculus is required.

Emergence: From Chaos To Order


John H. Holland - 1998
    Holland dramatically shows us that the “emergence” of order from disorder has much to teach us about life, mind and organizations. Creative activities in both the arts and the sciences depend upon an ability to model the world. The most creative of those models exhibits emergent properties, so that “what comes out is more than what goes in.” From the ingenious checkers-playing computer that started beating its creator in game after game, to the emotive creations of the poet, Emergence shows that Holland’s theory successfully predicts many complex behaviors in art and science.

In Praise of Mathematics


Alain Badiou - 2015
    Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.

Discrete Mathematical Structures with Applications to Computer Science


Jean-Paul Tremblay - 1975
    

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

Understanding Complexity


Scott E. Page - 2009
    These include tipping points, the sociological term used to describe moments when unique or rare phenomena become more commonplace; the wisdom of crowds, the argument that certain types of groups harness information and make decisions in more effective ways than individuals; six degrees of separation, the idea that it takes no more than six steps to find some form of connection between two random individuals; and emergence, the idea that new properties, processes, and structures can emerge unexpectedly from complex systems.

Soccermatics: Mathematical Adventures in the Beautiful Game


David Sumpter - 2016
    How to make sense of them? The answer lies in mathematical modeling, a science with applications in a host of biological systems. Soccermatics brings the two together in a fascinating, mind-bending synthesis.What's the similarity between an ant colony and Total Football, Dutch style? How is the Barcelona midfield linked geometrically? And how can we relate the mechanics of a Mexican Wave to the singing of cicadas in an Australian valley? Welcome to the world of mathematical modeling, expressed brilliantly by David Sumpter through the prism of soccer. Soccer is indeed more than a game and this book is packed with game theory. After reading it, you will forever watch the game with new eyes.

The Puzzler's Dilemma: From the Lighthouse of Alexandria to Monty Hall, a Fresh Look at Classic Conundrums of Logic, Mathematics, and Life


Derrick Niederman - 2012
    Among the old chestnuts he cracks wide open are the following classics: Knights and knaves The monk and the mountain The dominoes and the chessboard The unexpected hanging The Tower of HanoiUsing real-world analogies, infectious humor, and a fresh approach, this deceptively simple volume will challenge, amuse, enlighten, and surprise even the most experienced puzzle solver.

Prisoner's Dilemma: John von Neumann, Game Theory, and the Puzzle of the Bomb


William Poundstone - 1992
    Though the answers may seem simple, their profound implications make the prisoner's dilemma one of the great unifying concepts of science. Watching players bluff in a poker game inspired John von Neumann--father of the modern computer and one of the sharpest minds of the century--to construct game theory, a mathematical study of conflict and deception. Game theory was readily embraced at the RAND Corporation, the archetypical think tank charged with formulating military strategy for the atomic age, and in 1950 two RAND scientists made a momentous discovery.Called the prisoner's dilemma, it is a disturbing and mind-bending game where two or more people may betray the common good for individual gain. Introduced shortly after the Soviet Union acquired the atomic bomb, the prisoner's dilemma quickly became a popular allegory of the nuclear arms race. Intellectuals such as von Neumann and Bertrand Russell joined military and political leaders in rallying to the preventive war movement, which advocated a nuclear first strike against the Soviet Union. Though the Truman administration rejected preventive war the United States entered into an arms race with the Soviets and game theory developed into a controversial tool of public policy--alternately accused of justifying arms races and touted as the only hope of preventing them.A masterful work of science writing, Prisoner's Dilemma weaves together a biography of the brilliant and tragic von Neumann, a history of pivotal phases of the cold war, and an investigation of game theory's far-reaching influence on public policy today. Most important, Prisoner's Dilemma is the incisive story of a revolutionary idea that has been hailed as a landmark of twentieth-century thought.

Bursts: The Hidden Pattern Behind Everything We Do


Albert-László Barabási - 2010
    But now, astonishing new research is revealing patterns in human behavior previously thought to be purely random. Precise, orderly, predictable patterns... Albert Laszlo Barabasi, already the world's preeminent researcher on the science of networks, describes his work on this profound mystery in Bursts, a stunningly original investigation into human nature. His approach relies on the digital reality of our world, from mobile phones to the Internet and email, because it has turned society into a huge research laboratory. All those electronic trails of time stamped texts, voicemails, and internet searches add up to a previously unavailable massive data set of statistics that track our movements, our decisions, our lives. Analysis of these trails is offering deep insights into the rhythm of how we do everything. His finding? We work and fight and play in short flourishes of activity followed by next to nothing. The pattern isn't random, it's "bursty." Randomness does not rule our lives in the way scientists have assumed up until now. Illustrating this revolutionary science, Barabasi artfully weaves together the story of a 16th century burst of human activity-a bloody medieval crusade launched in his homeland, Transylvania-with the modern tale of a contemporary artist hunted by the FBI through our post 9/11 surveillance society. These narratives illustrate how predicting human behavior has long been the obsession, sometimes the duty, of those in power. Barabási's astonishingly wide range of examples from seemingly unrelated areas include how dollar bills move around the U.S., the pattern everyone follows in writing email, the spread of epidemics, and even the flight patterns of albatross. In all these phenomena a virtually identical, mathematically described bursty pattern emerges.Bursts reveals what this amazing new research is showing us about where individual spontaneity ends and predictability in human behavior begins. The way you think about your own potential to do something truly extraordinary will never be the same.

Number Theory


George E. Andrews - 1994
    In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..

Learning to Love Math: Teaching Strategies That Change Student Attitudes and Get Results


Judy Willis - 2010
    Judy Willis responds with an emphatic yes in this informative guide to getting better results in math class. Tapping into abundant research on how the brain works, Willis presents a practical approach for how we can improve academic results by demonstrating certain behaviors and teaching students in a way that minimizes negativity.With a straightforward and accessible style, Willis shares the knowledge and experience she has gained through her dual careers as a math teacher and a neurologist. In addition to learning basic brain anatomy and function, readers will learn how to* Improve deep-seated negative attitudes toward math.* Plan lessons with the goal of achievable challenge in mind.* Reduce mistake anxiety with techniques such as errorless math and estimation.* Teach to different individual learning strengths and skill levels.* Spark motivation.* Relate math to students' personal interests and goals.* Support students in setting short-term and long-term goals.* Convince students that they can change their intelligence.With dozens of strategies teachers can use right now, Learning to Love Math puts the power of research directly into the hands of educators. A Brain Owner's Manual, which dives deeper into the structure and function of the brain, is also included--providing a clear explanation of how memories are formed and how skills are learned. With informed teachers guiding them, students will discover that they can build a better brain . . . and learn to love math!